EOS: An Architectural, Performance, and Economic Analysis

Brent Xu', Dhruv Luthra?, Zak Cole?, Nate Blakely*

Abstract—The EOS system presents a platform for smart
contract development and decentralized storage in attempt
to address the common scalability issues found in popular
blockchain systems such as Ethereum and Bitcoin. Through its
implementation of delegated Proof-of-Stake (dPoS) consensus
and an architectural design focused on parallel processing
and full-duplex communication, the EOS system attempts to
provide a decentralized application development environment
which offers high transactional throughput. Since the public
release of the EOS main-net, multiple parties have speculated
and made claims of the systems ability to provide processing
capabilities in the range of 5,000 to 1,000,000 transactions per
second. However, such performance has yet to be observed
in a production network. No comprehensive analysis of the
EOS system architecture has been conducted to determine the
capabilities of the network.

The following document outlines the results of a three-month
research initiative to analyze the architecture of the EOS system
and benchmark its functional performance under a range of
environmental conditions. Through practical testing and exper-
iments in a controlled laboratory setting, this research provides
a thorough and objective model of its design, performance, and
economics in order to present a reference for the blockchain
community.

I. INTRODUCTION

The cryptoasset market of 2017 garnered significant main-
stream attention with the unprecedented introduction of new
users to the blockchain space. This high volume of activ-
ity similarly yielded a variety of blockchain-based projects
driven by the financial promise of the Initial Coin Offering
(ICO). With an easy way to raise the capital needed to
develop practical solutions within a new and unregulated
market, over 500 total projects have raised an excess of $12
billion to date [1].

One of such projects was EOS, developed to provide
an operating system-like construct intended to allow for
the rapid scaling of decentralized applications. In order to
address the essential shortcomings found within popular
blockchain projects, the EOS architecture adopted several
novel solutions in order to provide higher processing ca-
pabilities and throughput. With a focus on providing an
optimized smart contract-oriented platform, much of the
message surrounding the EOS ICO positions the system as a

IB. Xu is Principal Investigator at Vulcan Labs,
brent.xulconsensys.net

2D. Luthra is a blockchain researcher at Vulcan Labs, ConsenSys.
dhruv.luthra@consensys.net

3Z. Cole is Chief Technology Officer of Whiteblock, a blockchain testing
company. zak@whiteblock.io

AN. Blakely is a software
nate@whiteblock.io

ConsenSys.

engineer at Whiteblock.

competitor and successor to Ethereum, laying the foundation
for blockchain 3.0 [2].

The claims of the system’s ability to provide transactional
throughput in the millions has draw significant attention from
the cryptocurrency community. The goal of this research is to
validate any speculative claims surrounding EOS and provide
a comprehensive understanding of the system design and
capabilities.

A. Overview

1) Architecture: In this section, we examine the function
and design of the following components that comprise the
EOS system:

o Accounts: How users are defined in the EOS network,
including the relationship between accounts, wallets,
and cryptographic keys.

o Transactions and Contracts: How transactions and con-
tracts are constructed in the network.

« State Management and Blockchain: How the EOS pro-
tocol manages the state and resources associated with
decentralized applications.

o Execution Environment: How smart contracts and de-
centralized applications are executed in the EOS net-
work by block producers.

o Consensus: How the EOS network establishes consen-
sus concerning whether or not a transaction, action,
or contracts is valid and adheres to the rules of the
protocol.

2) Performance: This section presents the results of our
performance benchmark testing conducted using the White-
block blockchain testing framework in the Whiteblock lab
[3]. These tests focused primarily on the following three
areas:

Transactional throughput of the EOS network under the
presence of various environmental conditions, including
transaction volume, network latency, and packet loss.

Fault tolerance of the EOS system, including an analysis
of how the system responds to network partitions, forks,
and the presence or absence of a varying number of block
producers.

Security of the EOS system, including the ability of block
producers to manipulate state and the degree of control they
can exert over the network.

3) Economic Systems Analysis: This section of the report
aims to better understand the economics of the EOS system,
such as token design, the behavior it incentivizes in users,

and how it effects network function. This section also contex-
tualizes the EOS token sale, provides information about the
various utilities of the token, summarizes the token supply,
demand, and value drivers, assesses existing game theory
of the platform, and presents some potential issues with the
EOS economic model.

II. ARCHITECTURE

Architecture analysis will consist of evaluating the vari-
ous layers of the platform and identifying the fundamental
components that enable its proper function.

A. Overview

EOS is a collection of applications that interact within
a distributed database structure. As illustrated in Figure 1,
the software system is comprised of three primary compo-
nents: Nodeos, Cleos, and Keosd. Users interact with
the network through the command line tool, Cleos, which
subsequently connects through Nodeos to the rest of the
database management system (DBMS) [4]. The system is
organized as a network of interconnected computational
units with a loosely coupled architecture. This allows the
replication of processes that enable the system to be updated
based on changes to the EOS database while distributing the
computational workload among the block producers.

1) General Architecture: Architected as a peer-to-peer
blockchain system, EOS utilizes system-optimized ap-
proaches to operate in specified execution environments. The
system is non-autonomous, based on its consensus model
which relies heavily on the 21 block producers. Data and
computation are distributed among the 21 block producers
in the network creating a central/master DBMS, which coor-
dinates updates across the network. The distributed database
is homogeneous since the 21 block producers are processing
transactions in order to achieve consensus among all of the
separate databases within the EOS network. EOS has created
their own LLVM front-end that is used through the EOS
C++ tool-chain to compile contracts. The nodes that are
implemented should follow the same protocol for processing
and validating transactions and contracts across the network

[2].
2) Components:

o Nodeos: The core component of the node setup is
configured as a daemon using various plugins that allow
the node to run. Nodes can either be producing nodes
(block producers) or non-producing nodes that are only
affiliated with an account. Non-producing nodes can be
implemented as a public HTTP-RPC API for develop-
ers. These nodes can also act as private endpoints for
apps that wish to utilize the computational infrastructure
for local development [5].

o Cleos: Clients can access the EOS network via the
Cleos command line interface (CLI) tool. This tool
allows interaction with the overall network and con-
figuration of interactions within the network through
Nodeos. The block producers in the network host,

Client
Network accessed via e Cleos requires instance of
command line tool to
interact with sysiem Clecs Keosd for subcommands
and manage keys)
= Wallet create command of
pm—— cleos
| Accounts with permissions
- .
Keosd J Nodeos managed by Nodeos
Server
Architecture i o o
‘ Wallets Contracts ‘ Actions ‘ ‘ Transactions Accounts

— Y
Keosd key management system secures keys as actions are transmitted

through contracts to be updated in the Nodeos infrastructure. Netwaork of
accounts determine composition

Fig. 1. Overview of EOS System Architecture

deliver, and manage most of the resources consumed by
the clients, allowing them to directly access information
about transactions [6].

e Keosd: This component of the system is designed to
store private keys that are used to sign transactions
within the network. Keosd is run locally and stores
keys locally. Users are able to use and query the keys
through its RPC API [7].

Systems running EOS need pre-built instances of Cleos and
Nodeos that are running at the time prior to running a node
in the network [5].

When the network is created, various components allow
particular actions to persist throughout the network. These
actions accomplish several tasks:

« Loads basic plugins

o Set server address

« Enable CORS

o Adds contract debugging

The network can be considered properly configured when
Nodeos is validating/syncing blocks in the network. When
an alias affiliated with the Cleos tool is created on a
local system, a command is processed in the Nodeos
application [7]. This network setup is necessary for proper
coordination to exist between the different components of
the network. As the interface is created for operation across
nodes, the network allows for transactions to be processed
efficiently using the shared computational resources of the
block producers.

3) Contract Development Toolkit (CDT): The CDT is
designed to organize the tools necessary for contract com-
pilation and ABI generation. The binaries associated with
eosio.cdt are installed on the local machine. The
eosio.cdt repository contains the eosio—cpp compo-
nent which compiles C++ code to WASM. This is also how
ABI’s are generated to allow user actions to convert between
JSON and their binary form [8].

B. Accounts

1) Overview: EOS implements an account-based mecha-
nism for maintaining a record of state. Understanding these
accounts will provide an understanding for the system’s

System Setup

‘Cleos | Keosd = | Wallets | <= | Keys

Currently Running
Built and ready to run

/I Cleos relays key
AV signatures between
g y nodeos and keosd

e [

Signatures

Nodeos

Overall

Docker —
Network

‘ Set up working environment

Fig. 2. How Accounts Fit Into the EOS System

foundational components and the relationship between state
and contracts within the system.

2) Account Configuration: In the EOS architecture, ac-
counts are presented as authorization structures that can
define senders and receivers of actions. Hierarchical autho-
rization can be granted through permissions management and
contracts. Accounts can be granted permissions and config-
ured to provide individual or group access for validating
transactions [9]. They act as the base-unit data modules that
allow sending and receiving of transactions in the system.

The creation of accounts coincides with key generation,
where the keys created are associated with their correspond-
ing wallets. This interaction is facilitated through the Cleos
application. Cleos, Keosd, and Nodeos act in unison to
publish the account within the network. Wallets are used to
interact with the network through Cleos [4]. This work-
flow can be seen in Figure 2.

Wallets are represented as containers for public-private
key pairs that are used to authorize operations performed in
the system: Keosd manages wallets and access is facilitated
through Cleos to allow user access to accounts [10].

3) Account Architecture and Setup: Accounts rely on
permission-based structures that define roles within the sys-
tem. Nodeos is the interface to the EOS network and both
publishes accounts and manages their interactions within the
network through Cleos. Cleos provides the ability for
users to generate additional key pairs and interact with the
RESTTful interface.

Cleos is used to request Nodeos to create accounts
and publish them into the network. As the Cleos tool
is used to import private keys, the actions executed in
the network will be signed by the keys affiliated with the
account. When running multiple wallets, users must import
the necessary keys into the wallet to create signatures for
transactions [2]. Successful wallet import executions
result in successful correspondence between the private key
and public key within the system. As wallets contain keys,
you can expect the wallet files to be stored in the data-dir
or /eosio-wallet folder [4].

4) Account Functions: Accounts are used to execute
contracts by sending structured actions to block producers.
These actions are routed through the rest of the network
in order to reach the destination accounts [4]. EOS defines
contracts through actions and action handling scripts, which
will be described in Section II.C. Accounts have two levels
of permission: active and owner.

Active, the most generic account permission structure,
is used for transferring funds, voting for producers, and
committing high-level changes in the EOS system. It allows
you to stake, transfer, vote, buy RAM and change the Active
key. [2].

Owner accounts can execute any actions that will affect
the authority of the account. It allows everything that the
active permission does, but it can also change the owner of
the account [2].

The cleos create account command will be exe-
cuted from Nodeos to create an account with a user speci-
fied unique name. These accounts are required to stake EOS
tokens in order to reserve RAM necessary to maintain the
account [11]. The naming convention allows the characters
[1-5a-z.], with 12 characters at most.

Hierarchical permissions can be created in this system,
where permissions have different thresholds for the necessary
signatures for transactions to be valid. This means that one
account can permission another account to have some type
of access. The newly permissioned account similarly can
be given the right to allow other accounts to have more
access, meaning that the permissions of an account can be
chained together by multiple parties. The client facing side
of the software architecture will log into Cleos to unlock
wallets that manage how keys are granted to different account
authorities [12]. To summarize the authority and permissions
systems surrounding accounts:

o The permission management system is consistently
checking for the right signature verification when it
comes to transactions.

o Authority is distributed and compartmentalized across
users in order to create hierarchical authorization struc-
tures.

o Control affiliated with accounts is weighted by the
hierarchical structure that allows multi-user control of
accounts.

EOS can define access to the necessary keys based on the
relationship between accounts and permissions [4]. Through
this configuration, multi-signature accounts and customized
permission levels can be created through the eosio.msg
contract and combinations of keys and accounts can be
authorized to send actions to other accounts [2]. This hi-
erarchical chain allows accounts to act on behalf of other
accounts.

5) Analysis: An analysis of accounts in the EOS ar-
chitecture indicates that accounts manage permissions and

funds on the EOS network. Accounts in EOS follow a
traditional configuration, similar to other cryptography based
distributed systems. However, EOS accounts have another
layer of abstraction beyond just a public/private key pair [4].
Accounts are congruent to user profiles, in which multiple
key pairs and wallets, with varying permissions, can be
tied to one account. To manage these, a user interfaces
with Nodeos and Keosd through the command line tool,
Cleos.

For comparison, Ethereum implements two types of ac-
counts (contract accounts and externally owned accounts) in
which the mapping of account addresses and account state
are associated through cryptographic proofs that validate
their state. Ethereum accounts are not actually user profiles,
but instead represent public/private key pairs prevalent in
blockchain architecture [13]. When comparing this to EOS,
Ethereum accounts aren’t reliant on constructs similar to user
profiles, but instead integrate with the underlying cryptogra-

phy.

EOS accounts rely on traditional trust mechanisms to
validate actions. Should an account violate this trust, then
the account can be frozen by block producers a concept
that will be discussed in more detail in a later section. In
spite of this mechanism, however, there is no guarantee that
consensus will always result in the elimination of bad actors.
The main difference between this setup and how accounts
are created within Ethereum, is based on cryptographic
proofs and validity. In Ethereum, a Patricia Merkle Tree
[13] solidifies the state of accounts, whereas in EOS, state is
instantiated within the database or table used to stream state
(more on this will be explored in Section II.D).

Based on an analysis of the account model in the EOS
system, it is clear that EOS accounts are not composed
of the simple public/private key pairs implemented within
other cryptocurrencies like Bitcoin or Ethereum: the EOS
account model is more similar to a distributed database with
traditional, permission based account systems. Accounts are
utilized like user profiles rather than a simple public/private
key pair with cryptographic validation [4]. Based on this
assessment, the EOS network is not necessarily a blockchain-
based cryptocurrency network, but rather a homogeneous dis-
tributed database network that allows different user accounts
to communicate and interact through the distributed database
network.

C. Transactions and Contracts

1) Overview: This section explores the relationship be-
tween smart contracts and the execution of transactions.
Within blockchain environments, transactions act as com-
putational events that dictate state transition. The way that
transactions call upon existing contracts or initiate new
ones is dependent upon the configuration of these contracts
and how the system interface is designed. The way that
transactions and contracts interact with a blockchain system

Action
—>

Contracts and accounts
communicate via Actions

:/ Receipt | |

(Hash)

|

Accepts

| Transaction Completion

Fig. 3. EOS Actions

defines certain levels of robustness that exist within the
infrastructure.

2) Contracts: Smart contracts in EOS are defined by a
combination of actions and action handlers. Action handlers
are designed to access different accounts through sending
actions that can interact with the private databases affiliated
with each account [4]. Block producers schedule transactions
in order to optimize conflicts over memory and resource
intensive actions within the network [14].

3) Web Assembly: Web Assembly (WASM) can be used
as a compilation target for many high level languages such
C++/C/Rust [15]. WASM is the instruction format that the
EOS virtual machine understands, meaning that the inter-
action between the EOS library and WASM binary code
happens through Web Assembly modules [16].

4) Components : Contracts: Programs that are registered
in the network and executed on EOS nodes. Contracts can
consist of action requests that are stored within the EOS
database framework. Contract code is compiled into low level
bytecode that can be executed by block producers [17].

Actions: These are the single atomic units of opera-
tion. Actions represent the communication interface between
contracts and accounts. Most of the EOS network is built
using actions that interact with each other and form the the
underlying architecture [17].

Transactions: Transactions represent the execution of
actions. Transactions can consist of individual actions or
multiple actions [17]. The successful execution of transac-
tions dictate the change of state in the EOS blockchain. The
relationship between transactions and actions is shown in
Figure 3.

EOS uses common contract functions to allow accounts
to execute actions on behalf of users. EOS contracts are
functionally similar to Ethereum-based ERC-20 contracts for
the issuance of tokens [18].

5) Communications and Actions: EOS contracts can com-
municate and coordinate with one another, allowing depen-
dencies between current and future actions. Communication
between contracts is asynchronous. Further iterations of the
resource distribution algorithm is designed to alleviate some
of these concerns [2]. In EOS, contracts are software that are
registered by nodes in the network. The process of sending
an EOS contract is illustrated in Figure 4.

. . Contracts
Communication Model

Client pushing
Dispatches actions requests H

Action definition Type definition
Actions operate primarily in
message based
communication

Specify the required content
and structures

WASM code
implements
contract

Fig. 4. Contracts in the EOS System Architecture

messages to
Nodeos to WASM code.

eosio::action::send

Action Handlers
The database keeps
persistent data in the
network

<apply> method) (}
in contract (— | Contracts [

implementation

AV) AV

{ Action “Apply”
= A Context V'Q_‘?Fm"

\ . = _ E
EOSIO Database - - } Action

| Handler

Action “Apply”

Action
Context —_

Fig. 5. Action Handlers Can Apply Multiple Contexts

Contracts and accounts are shown communicating via
individual actions. When several actions are combined, they
are packaged as transactions which execute the series of
actions sequentially, as shown in Figure 5 [17]. Transactions
are generated and a receipt is derived in the form of a hash.
When nodes receive the transaction receipt/hash, there is high
probability of the transaction being processed by the block
producer, though it is not 100% confirmed yet [10].

Transactions can be constructed through two different
types of communication models, as shown in Figure 6. These
models are designed to provide granular control over actions
that require immediate attention, as opposed to deferred
actions that require more complex business logic [19].

The manner in which contracts are executed is important
for the database model to execute necessary Database Man-
agement System (DBMS) functions. The context of actions
reference three variables [4]:

« Receiver: the account currently executing processes

o Code: the account that authorized the contract

o Action: the ID of the currently running action

The action context also contains [4]:
o Current Transaction Data:

— Transaction headers
Ordered vector of all original actions
Vector of context free actions
Prunable set of context free data

Two Basic Communication Models

Inline Communication Deferred Communication

Calling Resultant Calling Result ‘
Action Action Action
Transaction Transaction
N N[Deferred
(Action 1 ‘ ‘ Action 2 ‘ ‘ Action 3}

Nested transactions. Calling the inline
communication results in actions of the
same series being executed.

Transaction

Deferred actions are schedule subsequently
to the original Action. These run at the block
producer’s discretion

Fig. 6. Two Basic EOS Communication Models

— Full index of blobs
o Transaction Side Effects:

— Changes to state in the EOS persistent storage
Notifications to the recipients of the current transac-
tion

Inline action requests to send to a new receiver
Generation of new (deferred) transactions
Cancellation of existing (in-flight) deferred transac-
tions (i.e. cancel already-submitted deferred transac-
tion requests)

The working memory of an action is not shared with other
actions in the same transaction as access is closed off based
on permissioning across accounts. Variables are not available
across action contexts and state is only passed among actions
through persisting it in the EOS database [21]. Components
in the system are compartmentalized for maximum efficiency
in terms of processing.

6) Analysis: EOS uses a contract based model to build
out the overall system. This model permeates to the lowest
level of the protocol, as many of the system contracts,
including the one defining the EOS token, follow this model.
Contracts in EOS are more congruent with traditional lines
of code that are designed to execute computational functions
than the smart contract model defined and created with the
Ethereum protocol. They are essentially plugins or modules
within block producers, that users must interact with. Smart
contracts in Ethereum are directly tied to state transitions,
value transfers, and cryptographically determined algorithms
that define an economic system. Gas in Ethereum is designed
to measure the amount of computational effort expected
to execute certain operations. The participants in Ethereum
networks are also crypto-economically incentivized toward
validating the network due to these fees generated from
running contracts [22]. As state in Ethereum is cryptograph-
ically determined by instantiation in the form of Patricia
Merkle Tree data structures, smart contracts are the compu-
tational logic components that result in state changes [23]. In
Ethereum transactions, state transitions result in cryptograph-
ically validated changes to the underlying composition of the
blockchain state as can be discerned through the changes to

the Patricia Merkle Tree data structure. Conversely, trans-
actions in EOS result mainly in changes to the underlying
database, rather than cryptographically verified state changes
to an underlying blockchain data structure like Ethereum.

As demonstrated by our previous analysis of the EOS
system architecture, the communication model results in
data being invoked through the client to eventually being
processed by Nodeos [4]. All of these actions operate in
an environment that lacks cryptographic validation of the
contracts and transactions. Additionally there is no economic
incentive mechanism that is enforced to facilitate proper
execution in the system. This interaction offers services of a
traditional computing environment with no cryptoeconomic
system, as will be discussed in Section IV. Because EOS
is built utilizing WASM in the context of normal database
architecture, there are no substantial differences between
EOS and what is expected in a traditional client/server
architecture.

In EOS, when ABIs are generated to allow JSON-Binary
conversion, the code that is processed relies on specifying
the serialization/interface for interaction between human
readable JSON and machine readable binary and does not
exhibit the peer-to-peer characteristics of smart contracts
on the blockchain. Alternatively, in Ethereum transactions,
smart contract code is replicated by all nodes in the Ethereum
Virtual Machine (EVM) to preserve the validity of the code
and to ensure consistency, which contributes to the practi-
cal immutability of the contract and peer-to-peer execution
[13]. How smart contracts are compiled in the EVM is
vastly different from the way WASM is interpreted in EOS
as WASM is used for generalized computing and EVM
bytecode pertains to blockchain computing. This distinction
points further to the dynamic that EOS does not necessarily
implement a blockchain platform, though rather a general-
ized computing platform. In EOS, contracts are specifically
modifiable and historical compositions of contracts can be
altered. This model for contracts is effective for the command
and control system architectures you would expect in a
distributed database, not a blockchain [24], [2].

As detailed in Blockchain vs DLT: Partl [23], the dynam-
ics of client/server and database architectures are explored
in terms of how they relate to Ethereum. Legacy Web 2.0
companies like Oracle and IBM have set the standard for
client/server architectures and this model has been referenced
within the design of distributed systems. A dynamic that
we notice today in our analysis of software platforms is
that distributed ledger systems and homogeneous distributed
database systems like EOS are all still influenced heavily
by the traditional client/server architecture. This is a tra-
ditionally accepted configuration, though it is important to
realize that Ethereum and other cryptocurrency networks are
designed for peer-to-peer configurations. In the Ethereum
protocol, computation and validation is distributed through-
out every node that participates in the system, so there is
no centralized server architecture from which clients must

request access. Nodes run their own implementation of the
EVM and process the relevant code [23], a stark contrast
to the EOS system where the computation and validation of
contracts is primarily executed by the 21 block producers.

D. State Management and Blockchain

1) Overview: State facilitates representations of infor-
mation and events in a computing environment. It defines
the interactions that occur between different contracts and
can have different contexts when exploring the concept as
it pertains to blockchains vs traditional database systems.
As described by Gavin Wood in the Yellow Paper [25],
a blockchain is a cryptographically secure, transactional
singleton machine with shared state. The structure of state
in these environments defines aspects of the system’s in-
tegrity of the infrastructure level platforms. Foundational
layer technologies need proper state management in order to
ensure high fidelity data structures upon which subordinate
protocols can be built. The composition of the blockchain
infrastructure is necessary in determining the degree of
usability and stability of the underlying technology as it
relates to state [2]. In order to establish a level of cohesion
within a strong base layer protocol, a system must ensure the
validity and maintenance of the system’s state. As blockchain
becomes a technology that is focused on value creation and
systematic implementations of new forms of digital assets,
resolute base layer components are needed to handled the
demands of comprehensive environmental loads.

2) Resources: A key distinguishing factor among the var-
ious systems and networks in our ecosystem is how state and
resources are managed within the computational framework.
EOS state is highly integrated into the inner workings of the
token model [4]. To allocate resources, token holders stake
their tokens. This entitles them to the applicable proportion
of the resources. There are three main resources utilized in
the EOS distributed system architecture. Bandwidth and

Log Storage (Disk): Bandwidth can be broken down into
instantaneous and long term bandwidth, which essentially
acts as the Log Storage of all actions that take place in the
network. This store of actions is downloaded by all nodes
within the distributed computing environment. The log of
actions is used to recreate the state of all applications run
on the homogenous distributed database management system
that comprises the bulk of the EOS architecture. Bandwidth
is allocated on a fractional reserve basis, meaning that unused
bandwidth can be rented or delegated to different accounts
[2]. Computation and Computational Backlog (CPU):

Computation also has instantaneous usage as well as long
term usage. Computational backlog (debt) is considered the
calculation that is necessary to regenerate the state of Action
Logs that are housed in the Log Storage. Computational
backlog needs to be carefully managed as it can face limiting
factors when the need for computation grows too quickly
[2]. Similarly to bandwidth and log storage, computation
is also managed through a fractional reserve basis. State

Storage (RAM): In the EOS architecture, state storage
represents information that coincides with application logic.
Block producers will publish their available capacity for
bandwidth log storage, computational debt, and state storage.
State storage availability is dependent upon the amount of
tokens that an account stakes [2]. Unlike Bandwidth and
computation, state storage cannot be rented or delegated
to other accounts. Storage of application state requires the
account to have tokens staked in the network.

3) Defining State: State is persisted across actions through
EOSs DBMS infrastructure. This optimizes the facilitation of
actions and transactions that are actively stored in the multi-
index table. State persistence is necessary for the system
to keep a record of transactions and data; modifications of
application state require write access in this architecture and
are conducted sequentially [19]. Computational debt used
to recreate application state from the Log Storage, through
validation logic, can be separated into three sections [26]:

« Validation that actions are internally consistent
« Validation that preconditions are met
« Modification of the application state

The read only aspects of this process can be conducted
in parallel, while modification which requires write access
must be conducted sequentially, when changes to the state are
involved as expected in shared lock/exclusive lock systems
[19], [27]. As actions from contracts operate within the action
context, several services are provided to better facilitate the
execution of the action:

o Actions are given access to working memory which
allows the working state to exist [4].

¢ When new actions are executed, a new reserve of work-
ing memory is allocated because the context of actions
are insulated from one another in that each action
operates independently without a posteriori knowledge
of any other.

« The persistent state of this network is allocated to these
action contexts through the EOS database which stores
and distributes this state information [26].

4) EOS Database: The model for object storage allows
retrieval functionality which utilizes the multiple indices
through the eosio: :multi_index C++ class. This al-
lows the contracts to read and modify the state history that
exists in the EOS database. As with traditional databases,
eosio::multi_index allows the index of tables to be
user-defined functions over a range of columns and rows
[28].

o The C++ interface provides a homogeneous container
that is organized by multiple indices through keys
derived from the objects.

o This structure is comparable to Boost multi-index con-
tainers, and conceptually can be considered tables in a
traditional database setting [4].

e EOS multi-index DB also has iterators that are analo-
gous to C++ database iterators.

Set up of EOSIO Multi-index Table

Each object will be a
Multi-Index table

Multi-Index
Table

Define Object using C++
<class> <struct>

Acts as the
primary_key

Member
function

Define <const> function in
<class><struct>

Users will be able to (Determine Secondary Indices
modify and erase
objects in the table as
required by the

contract specification

Hierarchical/multi-indexing will
allow for data analysis,
manipulation, and modification.
The hierarchical analog of
standard indexed objects will allow
crossed sets of iterables.

Define Key Extractor

. Instantiate Multi-Index Table

Fig. 7. Overview of How EOS Multilndex DB Works

5) Multi-Index Table : The RAM infrastructure of EOS
utilizes multi-index tables to store state data and allows for
create, read, update, and delete (CRUD) operations. The
database provides an accessible method for storing data
affiliated with smart contracts where actions can not access
the contexts of other actions [29]. Two main components
include:

o Code representing the contract account

e Scope representing the particular account that is re-
sponsible for the RAM fee and user of the contract;
where contract is deployed

The setup of these multi-index tables is shown in Figure 7.

The multi-index tables of the EOS Database are used
as the direct source of reference for the state affiliated
with the network. As the schema of the table is defined,
eosio::multi_index will be responsible for setting
up the contract that instantiates the table [29]. Nodeos
instances keep the database within memory by providing
access through the REST API that reads the database. There
are multiple methods of querying the database. On the
client side, Cleos using the RPC API will have access
to the database state. Access among accounts can also be
authorized through the require_auth method provided by
eosio.cdt which accepts an argument account_name
and designates access authorization [5]. The eosio.token
contract keeps track of balances of users in the database [4].

6) Analysis: As described in previous analysis, the EOS
system architecture is not a blockchain, according to tradi-
tional definition, but rather a non-autonomous homogeneous
distributed database system. As can be laid out within the
specification of the EOS architecture, the system was created
based on distributed database structures. It does not share the
same characteristics which traditionally define a blockchain,
but more closely resembles a DBMS, and more specifi-
cally functions as non-autonomous homogeneous distributed
database. The EOS system is designed to replicate significant

functionalities as can be expected from the finalized database.
The system is designed to assign relational database prop-
erties to the boost multi-index table [28]. This stores data
which is shared among participants in the network through

a boost library call that streams data between each user. Its
table is updated as actions are pushed through the system,
though most transactions and movements of information are
stored within the database structure of the system. State
within EOS is dependent upon storing data inside a database
where no cryptographic proofs or validation are used. What
is considered state in the EOS system infrastructure de-
pends primarily on how data is stored in the multi-index
table. In EOS, there is no mempool for accessing pending
transactions, as the multi-index table is not open source.
Transactions are processed in a black box resulting in further
layers of obfuscation. As far as cryptographic properties

are concerned, there are loose properties affiliated with the
hashing of transactions between each other, as well as an
Incremental Merkle component, though it seems that most
data is streamed between the database repositories within the
system. The entire database can be rolled back indefinitely. In
this system, consensus is not designed to validate transactions
but rather to maximize the system’s ability to process a
higher degree of transactions. From this architectural design,
it becomes further apparent that this system should not be
characterized as a blockchain [4].

E. Execution Environment

1) Overview: The execution environment and node set
up within the network determines infrastructure level ten-
dencies. The node setup will determine certain facets of
decentralization, scalability, network robustness, and overall
fault tolerance in real world environments. Controlling for
differences in configuration, it is important to get an overview
of how messages are propagated through the underlying
system.

2) Setup: EOS is a full-scale network with a large amount
of servers plus an ecosystem of users that aim to use the
platform for computational resources and instantiation of
applications within the hosted network environment [30].
The network appears to be demarcated between three main
layers, as illustrated in 8:

e EOS Core Network: the innermost layer

e« EOS Access Network: encapsulates the Core Network

o EOS Consumers: network that is accessed by a global
community

In this software architecture, one distinction to be made is
that the various layers do allow movement between domains
where there is no enforcement of boundaries between the
stack [2]. This setup within the homogeneous distributed
database allows for free sharing of information across the
system towards allowing different users to gain access to the
computation that is controlled within the server architectures
of the block producers [30].

3) EOS Core Network: The EOS core network consists of
block producers that are composed of industrial scale servers
designed to provide distributed computation to all of the
users in the mesh network, as shown in Figure 9. The 21

System Setup

Final source of computational
power derived from Core
Network

EOSIO
Core
Network
EOSIO Access { Consumer network
requests access through
NS L the Access Network

i) i i) i
e ™
EOSIO Consumer Network
AN J
Fig. 8. Network Access Layers of the EOS System

EOSIO Core Network

Network with high availability
Centralized computational
1 [e]

o] [l [=]]

EOSIO Access
Network

EOSIO Consumer Network

Fig. 9. The Role of The Core Network in EOS

block producer nodes are designed to house superior com-
putation in order for the receiving peers to obtain maximum
computation power from the producers [30]. The architecture
of the main network of servers provides the redundancy
needed to allow for the activation of failsafe servers should
the primary servers be unable to function. Servers are
designed to be protected by powerful firewalls. A single
block producer can be comprised of multiple industrial-grade
servers with redundant disk space and supplemental capacity.
The identities and locations of the block producers are kept
anonymous for the safety of the network. The servers are
designed to have high availability for network processing,
while blocking out access from any non-affiliated third party
[30]. The block producers use the exorbitant computational
power they have available to synchronize execution for
providing throughput and processing distributed through the
homogeneous database architecture [30].

4) EOS Access Network: The EOS network was designed
to provide horizontal scalability in a distributed network
environment. This scalability is achieved by placing the bulk
of the processing power within the EOS core network [2]. In
order to ensure that the core network is able to maintain focus
on providing higher computational processing abilities, the
EOS access network filters requests from EOS consumers as

« APInodes provide
EOSIO Access Network proxy, load balancing,
and DDOS protection
o Seed Nodes relay
validation with the
Consumer Network

EOSIO e il

Core I]
Network

EOSIO Access | |
Network .

EOSIO Consumer Network

\\\7 7//‘

Fig. 10. The Role of the Access Network in EOS

shown in Figure 10. Instead of processing transactions, the
access network layer is designed to alleviate the processing
overhead of the core network [30].

The access network relies on several of the same security
precautions and firewalls to prevent outside access into this
network. Access network nodes can also someday become
block producers in the core network if credibility is estab-
lished and the nodes are successfully voted by the token
holders [30]. The designation of primary roles depend on a
set of plugins, while nodes are theoretically able to perform
any action. Formal functions of the access network include:
proxy services, load balancing, and DDoS protection. The
access network contains two additional types of nodes: API
nodes and seed nodes [30].

API nodes offload work from other nodes and operate
behind a proxy or load balancer. They are designed to handle
pre-processing transactions and to decrease the likelihood of
transactions making their way to producing nodes. API nodes
also process action requests, filter out bad transactions, and
relay good transactions to a block producer or other nodes
[30]. Each producer has one associated API node.

Seed nodes help connect to the network and track
the blockchain. They are in charge of propagating blocks
throughout the network, though not all seed nodes will
validate the blocks [30]. By maintaining synchronization
with the block producers, seed nodes may be able to become
block producers if they function correctly and obtain enough
votes [30]. Seed nodes only communicate using the EOS
network protocol but do not process transactions, are not
configured to run HTTP protocols, but cannot be accessed
via Cleos. Block producers all have at least one associated
seed node [30].

5) EOS Consumer Network: The consumer network con-
sists of all of the groups who access EOS. Consumers
generally gain access via Cleos or direct use of the EOS
RPC API. Validating nodes assist by relaying information
between block producers and consumers [30]. In order for
the consumers of the network to access the computational
resources of the system, they need to request access first
via the access network, and then eventually aim to gain

computational resources from the core network layer.

6) Analysis: Further information regarding the EOS ar-
chitecture can be elucidated through understanding of the
execution environment setup and how nodes are configured
in the ecosystem. In order for consumers to be able to access
the EOS computational resources in the network, they need
to bypass several layers of control to eventually obtain access
to the network [2].

Since the network is architected from a top-down perspec-
tive which limits decentralized participation in performing
essential network functions, users must navigate through
several layers of software hierarchy [2]. This is further
illustrated in the relationship between the core and access
networks.

This type of centralized configuration is optimal for top
down command and control system infrastructures though
may not necessarily be effective for decentralized systems
that are designed to be base layer blockchain protocols. The
EOS Core Network is comprised of non-transparent servers
that do not share the source code that is being processed
due to firewalls and insulation of the network. Given this
structure, algorithmic or cryptographic proof implemented
to validate that the block producers are actually running
the same software or client presented within the publicly
available EOS repository (this will be further explored in
the Section III).

As mentioned in previous analysis, EOS architecture mir-
rors what would be expected in a client/server model like
Amazon Web Services (AWS) where access to most of the
computational and storage capabilities of the software are
centrally stored by the resource providers [4]. In the case
of EOS, the resource providers are the 21 block producers
and their server architectures that are designed to provide
computational resources to clients. EOS users do not share
any resources and must request access via a servers consent
prior to gaining any resources.

Alternatively, Ethereum reduces the distinction between
the client/server interaction. Because nodes communicate
through a peer-to-peer architecture, every node or client that
is participating in Ethereum is able to contribute to the
validation of the network as well as accessing the network.
Ethereum nodes exhibit characteristics of both the client as
well as the server in this network, showcasing a cornerstone
of how this new decentralized model is approached in the
Web 3.0 peer-to-peer space [23]. In Ethereum, any individual
is able to personally set up an Ethereum node and participate
in the network. There is no need to request access from
middle layers in the network or request permissions from
centralized servers. Setting up an Ethereum node will entitle
an individual to participate in the network and validate
transactions. In EOS, consumers are not entitled to this
right, as they are required to request access from block
producers. Based on these findings, it becomes clear that
EOS is fundamentally similar to a centralized cloud com-

puting architecture without the fundamental components of
a blockchain or peer-to-peer network. EOS block producers
are highly centralized and users can only access the network
using block producers as intermediaries. Block producers are
a single point of failure for the entire system.

F. Consensus

1) Overview: The final component of a decentralized
system is how different nodes come to agreement on what
has happened in the network. In permissionless networks, it
is also important that there are mechanisms that prevent spam
and Sybil attacks on the network. The EOS protocol uses
a DPoS mechanism that implements a voting mechanism
designed to help prevent actors from controlling multiple
nodes in the network to their advantage [2]. The bulk of
consensus comes from the voting and delegation in the
network.

2) Multiple Stages: There are two stages to the DPoS
algorithm. The first stage is staked voting, which is how the
algorithm allows entities to assume block producer roles in
the network for the purpose of processing transactions. In
this voting scheme, token holders stake tokens to vote for
potential block producers. The top 21 block producers with
the most tokens voting for them become the block producers
for the next epoch. The voting system is critical to EOS
design, as it theoretically enables token holders to vote for
block producers that provide lots of resources to the network
and vote out block producers that act maliciously [2], [31].

Once the block producers are selected for the next epoch,
the algorithm uses a traditional transaction processing mech-
anism between the block producers to agree upon transac-
tions and contract execution. Scheduling allows each block
producer to generate 6 blocks in a row at 0.5 second intervals
[2]. Each epoch lasts approximately 126 seconds (enough for
each block producer to generate 12 blocks apiece) and the
votes in the system are then recalculated to identify the next
group of block producers

3) Execution: When a block producer is generating the
next block in their database, they should be executing and
validating the transactions and contracts that clients in the
network are sending them. The block producer processes
the valid transaction and contracts and includes them in
the storage layer while filtering out the invalid transactions
and contracts. Once the data set has been processed and
constructed, the block producer broadcasts the information
to the other block producers in the network. Once a majority
of 15 block producers have validated and signed the data set,
the transactions are finalized [2].

If a block producer does not produce a set of transactions
while active, the other block producers confirm an empty
transaction set and move on to the next slot in order to ensure
the productivity of the network [2].

4) Transactions as Proof of Stake: In EOS, each transac-
tion refers to a block number which implements an additional
layer of consensus. Block producers are not necessarily

validating blocks, but are rather bundling transactions in a
manner that would be expected in a data streaming service.
Transactions are associated with previous blocks in the net-
work and an Incremental Merkle is implemented in parallel
to the multi-index table. The Incremental Merkle does not
interact directly with state, but is rather used ephemerally as
a data structure [2], [31].

5) Analysis: Because the bulk of consensus relies on
the voting and delegation, any instance in which those
actions can be corrupted completely negate the presence of
Byzantine Fault Tolerance (BFT). DPoS is designed to stop
groups of actors from controlling the network, though in
practice, the voting system is primarily used to determine
which block producers can control the network in its entirety
. Due to token concentration, EOS token holders ensure that
a cohort of block producers that are voted into the system are
allowed to process transactions while unencumbered by non-
block-producers. Meanwhile, once the block producers are
selected, the algorithm operates similarly to other traditional
DBMSs where transaction throughput is maximized for data
processing.

If a block producer fails or acts in a malicious manner,
the intent of the EOS protocol is for these block producers
to be voted out. As discussed later in the report, sometimes
the economics of this voting system can prevent this from
happening. Based off the voting system and governance
of the block producers, there are serious questions about
the EOS systems ability to adequately deal with these bad
actors while preventing centralization. Conceptually, it is
impossible for EOS to implement Byzantine Fault Tolerance.
A true BFT system would not be susceptible to cartels
forming in the system. As will be described in further
sections including the Performance Benchmarking section as
well as the Economics section, cartels are easily formed in
EOS, therefore negating any effort to claim BFT.

There are also problems with the transaction as proof of
state system implemented in EOS. The network is susceptible
to attacks in which the network can be flooded with false
transactions that are associated with legitimate transactions
from the past. The database structure of this system can be
characterized as ephemeral, while concurrent changes can
be rolled back indefinitely. The Incremental Merkle is sus-
ceptible to timing attacks as transactions are not necessarily
processed sequentially though rather subjectively based on
ease of processing (more of this will be explored in the
Section III). Data structures in EOS are more continuous
than they are discrete. Unlike proof of work systems which
offer probabilistic finality, EOS does not necessarily offer any
finality. As the entire database structure is based on Bitshares,
one of the key defining characteristics is the ability to revert
state and make changes that can date back to the genesis
block.

In EOS, there is a lack of determinism or algorithmic
enforcement of the consensus mechanism. Block producers
subjectively come to consensus on the transactions that are

Performance

Decentralization Security

Fig. 11. Z. Cole’s Triangle

received from other block producers without necessarily
relying on any particular cryptographic proof in order to
validate state. In blockchain technology, there is an effort for
state to pass in discrete manners, though in systems that aim
to implement parallel processing like EOS, there are a lot of
problems in dealing with non-determinism along with dead-
locks and race conditions. Block producers do not have direct
visibility into transactions until they are already implemented
within a block, meaning that block producers can only act
retroactively regarding faulty/nefarious transactions, creating
further doubt on the verification of consensus. EOS has
very limited cryptographic proofs and is not algorithmically
enforced, leading to the conclusion that BFT consensus is
theoretically impossible in EOS and the network should not
be characterized as having any form of BFT.

III. PERFORMANCE

A. Introduction

When evaluating the architecture of a blockchain system,
it is important to be aware of three particular metrics which
characterize their design as illustrated in Fig. 11.

These three metrics are intrinsically correlated: one can
only be optimized at the expense of another. Since they are
generally asynchronous and distributed in nature, blockchain
protocols tend to exhibit a lower level of transactional
throughput in comparison to traditional client-server archi-
tectures. This is often the result of computationally exhaus-
tive consensus algorithms and security mechanisms which
are implemented in order to eliminate the need for trust when
transmitting data within inherently adversarial environments.
The ability to conduct trust-less peer-to-peer transactions,
validated and ensured by cryptographic proofs, differentiates
blockchain technology as a unique and innovative solution
for privacy and censorship resistance within an increasingly
interconnected global community. The aforementioned de-
fines aspects of decentralization and security characterized
by popular blockchain systems such as Bitcoin, Ethereum,
or ZCash.

Determining the validity of a change in state is a security
function. Increasing the speed of this process is a perfor-
mance optimization. Performance optimizations are generally
made at the cost of security since reducing computational
overhead tends to present vulnerabilities within the overall

security of the system itself. However, this does not im-
ply that computationally exhaustive consensus algorithms
are exclusive to security since game theory dynamics can
compensate for this trade off when carefully designed and
implemented. Since mechanism design can be a difficult
undertaking, this loss can be compensated by limiting the
publics participation or direct interaction with a blockchain
networks core governance system, resulting in a higher
degree of centralization.

The intent of these performance tests was to evaluate the
trade-offs the EOS system makes in relation to the three
metrics listed above, observe the practical limitations of its
performance, and additionally cite an essential misunder-
standing in the way the blockchain development community
tends to identify and address performance bottlenecks.

B. Overview

The test series and system analysis was conducted on
the Whiteblock blockchain testing platform which presents
a deterministic framework offering such functions as the
provisioning of multiple nodes, configuring the network
conditions between these nodes, and automating their trans-
actions and behaviors within a deterministic and controlled
testing environment.

Since no standardized testing methodologies currently
exist within the blockchain space, the following method-
ologies will adhere to the Whiteblock testing methodology,
which presents a combination of performance, security, and
concurrent testing models in order to accommodate for the
dynamic, distributed, and asynchronous nature of blockchain
systems.

In order to obtain a conclusive and objective understanding
for the holistic functional performance capabilities of the
EOS system, a real-time network was engineered within
a laboratory environment. The specifications of this envi-
ronment and its accompanying modules will be outlined
in the following section. Subsequent sections describe the
benchmarking methodology employed and the results of
these experiments. We conclude with a presentation of the
relevant data pertaining to the key performance metrics in
our evaluation of the EOS system.

C. Scope

1) Software Version: The version of the EOS software that
will be tested will be the latest version of the master branch
on the EOS GitHub [31], or whichever version is presented
as the primary active branch for production use, should there
be a difference between the two.

2) Client Configuration: The config.ini file for each client
will be configured based on the best practices recommended
within the EOS Developers Portal [32], unless otherwise
deemed sub-optimal, in which case the reasoning and sup-
porting data will be provided.

Number of Servers 6

Model Name PowerEdge R720

Vendor Dell

CPUs (2) Intel Xeon CPU E5-2667
v2 @ 3.30GHz

CPU Max MHz 4000.0000

NIC 82599ES 10-Gigabit
SFI/SFP+ Network
Connection

RAM 256GB DDR4

TABLE I

SYSTEM SPECIFICATIONS

3) Resources: In order to come to a conclusive and ob-
jective understanding for the holistic functional performance
capabilities of the EOS system, a real-time network will be
compiled and deployed within the Whiteblock framework.
The specifications of this environment and its accompanying
modules will be outlined in a later section.

D. Test Environment

1) Overview: The proposed testing initiatives will be con-
ducted within a span of 6 rack-mounted chassis servers which
have been engineered in order to most accurately reflect the
computing environments provided by EOS block producers
themselves. An example of an EOS block producers self-
reported system specification can be found on the EOS New
York website [33].

2) System Specifications: The testing environment was
comprised of a network of 6 separate and high-powered
machines which were engineered in order to most accurately
reflect the computing environments provided by EOS block
producers themselves. An example of an EOS block produc-
ers self-reported system specifications can be found on the
EOS New York website .

Each machine hosted a number of virtual machines which
varied between test scenarios. These virtual machines acted
as client nodes within the EOS network. Each node ran the
Ubuntu 18.04 LTS operating system. A single instance of the
EOS client was run on each node which was was configured
and managed through the Whiteblock platform to commit
actions through the block producers. In each test, 21 block
producers were configured in accordance with the client
specifications presented within the EOS documentation. Each
had a config.ini file and ran the Nodeos client. The source
code was downloaded and compiled from the EOS GitHub
repository [31].

3) Network Topology: The nodes were peered within a
single chain, i.e., a network refers to a singleton genesis
block. The nodes are disconnected from the outside world,
and as such peered only with each other, however, each node
operated within its own isolated network and was assigned
its own IP address to ensure their logical separation from
one another, thereby allowing the Whiteblock framework to
configure and implement network conditions, such as latency

and packet loss to emulate real-world performance with a
high-degree of accuracy.

E. Testing Configuration

Configurations were distributed amongst the nodes while
in a paused state, such that client initialization is not included
in any benchmark.

1) Test Procedure Per test case:

1) Build new network

2) Create accounts

3) Configure block producer nodes

4) Configure client/user nodes

5) Unless otherwise specified, assume 21 block pro-
ducers per test scenario

6) Vote for appointed 21 block producers

7) Queue appropriate number of transactions
8) Send transactions

9) Timeout 10 seconds
10) Output raw data to DB
11) Parse and average data after each test
12) Tear down network
13) Format data and push to appropriate repo

F. Performance Metrics and Data Points

1) Block Size: Measure the average memory space an
individual block occupies; plot over time.

2) Block Time: Measure the average amount of time it
takes to generate the next block in the blockchain; plot over
time.

3) Transactional Throughput: Measure the amount of
time it takes for a unit of value to transfer from the account
of one individual holder to another.

a) Block Throughput: is calculated based on the num-
ber of transactions within a block divided by the amount of
time it took to create that block.

b) Chain Throughput: is an overall throughput that is
calculated based on a historical average of block throughput
values.

These two metrics can vary drastically from one another
based on particular variables and other network conditions.
For the sake of simplicity, when referring to throughput,
unless otherwise noted, well be referring to block throughput.

4) CPU Usage: Measure the average CPU usage; plot the
CPU usage over time

5) Network Usage: Measure the overall network usage;
plot the overall network usage over time

6) Transaction ID: The unique hash pertaining an indi-
vidual transaction.

7) Transaction Size: Measure and log the total amount of
memory space an individual transaction occupies, including
block headers and any accompanying metadata. Sometimes
referred to as transaction weight.

Variable tested Case 1 | Case2 | Case 3
Network Latency (ms) 0 50 100
Packet Loss (%) 0 0 0
Total Clients 24 24 24
Amount Staked 20k 20k 20k
Sender Accounts 24 24 24

Tx size per client sent (KB) 137 137 137
Tx per client (tx/s) 200 200 200
Total Tx submission rate (tx/s) | 4000 4000 4000

TABLE I
TEST SERIES A: NETWORK LATENCY

8) Accounts: Maintain a log of activity pertaining to spe-
cific accounts associated with transactional activity. Within
the EOS system, an account is defined as a human readable
string which is 12 characters in length. Each account refers
to a users public and private keypair. Keypairs are generated
using sekp256k1 elliptical curve parameters borrowed from
Bitcoin.

a) Sender Account: refers to the account from which a
transaction was sent.

b) Receiving Account: refers to the account that re-
ceived a transaction.

9) Send Time: Maintain a log consisting of timestamps
for each time a transaction was broadcast to the network.

10) Received Time: Maintain a log consisting of times-
tamps for when a sent transaction was available within the
receiving account.

11) Total Time: Maintain a log for the total amount of
time a particular test case or series was run. The first action
within the test environment for each new test case or series
marks the start time and the final action marks the end time.

12) Block Height: Maintain a log for the total amount
blocks within a chain for a particular test series or test case.

13) Successful Transactions: Another important metric to
note is that although transactional throughput remains fairly
consistent across tests, the number of successful transactions
decreased exponentially.

G. Performance Tests

The performance test of this investigation was conducted
across a series of 6 different metrics.

Series A: Network Latency

Series B: Number of Transactions Per Client
Series C: Size of Transactions Per Client
Series D: Packet Loss

Series E: Number of Block Producers

Series F: Higher Numbers of Clients

Three test cases were involved in each series of the testing.
Table II-VII indicate the topology setup, variables tested,
along with the metrics affiliated with each test series.

Variable tested Case 1 | Case2 | Case 3
Network Latency (ms) 0 50 100
Packet Loss (%) 0 0 0
Total Clients 24 24 24
Amount Staked 20k 20k 20k
Sender Accounts 24 24 24
Tx size per client sent (KB) 137 137 137
Tx per client (tx/s) 200 200 200
Total Tx submission rate (tx/s) | 8000 16000 20000
TABLE M1

TEST SERIES B: NUMBER OF TRANSACTIONS PER CLIENT

Variable tested Case 1 | Case2 | Case 3
Network Latency (ms) 0 50 100
Packet Loss (%) 0 0 0
Total Clients 24 24 24
Amount Staked 20k 20k 20k
Sender Accounts 24 24 24
Tx size per client sent (KB) 259 344 429
Tx per client (tx/s) 200 200 200
Total Tx submission rate (tx/s) | 4000 4000 4000
TABLE IV

TEST SERIES C: SIZE OF TRANSACTIONS PER CLIENT

Variable tested Case 1 | Case2 | Case 3
Network Latency (ms) 0 50 100
Packet Loss (%) 0.01 0.1 1
Total Clients 24 24 24
Amount Staked 20k 20k 20k
Sender Accounts 24 24 24
Tx size per client sent (KB) 137 137 137
Tx per client (tx/s) 200 200 200
Total Tx submission rate (tx/s) | 4000 4000 4000

TABLE V

TEST SERIES D: PACKET LOSS

Variable tested Case 1 | Case2 | Case 3
Network Latency (ms) 0 50 100
Packet Loss (%) 0 0 0
Total Block Producers 3 5 7
Total Clients 24 24 24
Amount Staked 20k 20k 20k
Sender Accounts 24 24 24
Tx size per client sent (KB) 137 137 137
Tx per client (tx/s) 200 200 200
Total Tx submission rate (tx/s) | 4000 4000 4000

TABLE VI

TEST SERIES E: NUMBER OF BLOCK PRODUCERS

Variable tested Case 1 | Case2 | Case 3
Network Latency (ms) 0 50 100
Packet Loss (%) 0 0 0
Total Clients 100 200 300
Amount Staked 20k 20k 20k
Sender Accounts 24 24 24
Tx size per client sent (KB) 137 137 137
Tx per client (tx/s) 200 200 200
Total Tx submission rate (tx/s) | 4000 4000 4000
TABLE VII

TEST SERIES F: HIGHER NUMBER OF CLIENTS

H. Consensus Tests

1) Voting: Similar to BitShares, consensus within the
EOS system is established via delegated Proof of Stake
(dPoS), which is entirely dependent on community partic-
ipation in order to effectively vote, or delegate, which nodes
will be block producers.

This voting mechanism assumes that a large portion of the
community will actually participate in this voting process,
however, a low percentage of actual token owners seem to
actually partake in this process, meaning that those who do
vote are more than likely aligned with a particular block
producer. Since there is no way to algorithmically prevent
the formation of cartels, we can assume that the majority
of voters are only doing so in order to ensure their own
self-interest. This is an intangible data point that cant be
deterministically measured through our testing initiatives,
however, we can test the extent of voting manipulation which
can be allowed within the network. Since users can vote
through proxies, what is the extent of control these proxies
have over the voting process? We can test this by attempting
to deliberately withhold votes from the network rather than
broadcasting them or pushing them to the smart contract
responsible for voting.

When a user votes for a block producer, this vote is
broadcast to the network as a transaction. If the account is
blacklisted/frozen, the vote will not go through. This shows
that the block producers will be able to keep their positions
if they blacklist/freeze the right accounts. This might need
some collusion as the blacklist will need to be shared among
the majority of the block producers.

Block producers are making a substantial amount of EOS
($10000+) daily. This means that these block producers
can simply create new accounts and/or use proxies and
reallocate their EOS to those accounts to vote for themselves
or other block producers with which they may choose to align
forming something of a cartel of block producers. This way,
these block producers can stay a block producer, even if it is
as a different node/account, and their allies remain in control
of the network.

2) Sybil Attack: Block producers have the ability to
blacklist accounts. Should a malicious actor (or group of
malicious actors) attempt to perform a Denial-of-Service
attack on the network, the block producers can simply limit
the accessibility of the account via blacklisting, however,
this method of deterring Sybil-like behavior can only be
enforced once a block producer has identified a malicious
actor, consensus has been achieved in order to blacklist the
account in question, and it has been manually blacklisted.
Although it costs a minimal amount of EOS to create an
account, the black listing process is slower than the rate at
which one can create new accounts and submit transactions,
rendering this process ineffective in reducing the occurrence
of such attacks.

Another mechanism to prevent such events is addressed

through the use of API nodes which are implemented on
the behalf of the block producer to provide functionality
similar to load balancers. Since the creation of new accounts
is inconsequential and transactions incur no associated fees,
one can assume the presence of these load balancers/proxies
to be a minor inconvenience to whomever has the technical
capacity to attack the EOS network. This hypothesis can
be tested by identifying the upper boundaries of transaction
capacity within the test environment and then intentionally
exceeding these boundaries for a prolonged period of time
in order to observe the effects on the network.

The EOS blacklisting mechanism requires all 21 block
producers to share the same blacklist, which is not broadcast
between all block producers. Each block producers blacklist
is stored locally, yet the producers would need to share their
blacklists with one another to some degree. The limits of this
functionality can be practically tested by evaluating whether
or not an account, once blacklisted by a specific block pro-
ducer, can simply wait for the next round of block production
by a different producer in order to ensure their transactions
are pushed via another producer. This also reveals the lack
of broadcasting/synchronization of nodes (particularly block
producers in this case), which shows that the EOS network
is not relying on peer-to-peer communication and there is a
huge disconnect between block producers.

3) Client Software: In his 2004 research describing
Reusable Proofs of Work [34], Hal Finney also presented
the concept of the transparent server in which distributed
network servers provide a degree of proof that the programs
they are running are indeed generated by the code they
present to the public. To bring this concept into context,
block producers within the EOS network offer only the
degree of transparency which they decide to offer. There is
no guarantee that the block producers are running the correct
client. Since most of the security mechanisms within the
EOS system rely on the intentions of the block producers
themselves, there is no algorithmic enforcement or available
method to validate the EOS software that the block producers
are running.

While more traditional blockchain systems evoke some
degree of game theory to avoid the need for trust within in-
herently adversarial environments, actors within the EOS net-
work are required to simply trust that the block producers are
acting in their best interest without any of the cryptographic
or algorithmic mechanisms that distinguish blockchain sys-
tems from traditional financial constructs. Proponents for
dPoS consensus would claim that these sacrifices of security
are made in order to enhance the overall performance of the
network, but these data points can be objectively evaluated
within this test series.

To what degree can the source code be changed? We tested
this by making our own changes to the source code and
analyzing the output performance data.

4) TPOS Vulnerability: TPoS is found to have some
inherent vulnerabilities and the reasons for these are as
follows:

o Transactions only require the hash of the most recent
block header to prevent transaction replay on different
chains and to signal the network that a user and their
stake is on a particular fork. There is no additional
validation needed for transactions to be added to a
block.

o Transactions are referenced by a multi-index table, but
this does not ensure that the block producers have
not tampered with the state (see section above Fault
Tolerance).

1. Results

1) Series A: The purpose of test series A is to assess
the network under varying network latency conditions and
to set up a base case to compare results with the other test
series. Round trip time (RTT) within the network is varied
between 0 ms, 50 ms and 100 ms. As shown in Table II,
high levels of TPS are sustained at O ms round trip latency.
When 50 ms of RTT is added into the system, performance
immediately falls below 50 TPS indicating that latency has
a significant effect on throughput. Once RTT is increased to
100 ms, performance drops even further.

2) Series B: Series B aims to vary the number of trans-
actions sent per client. As can be seen through the data, the
number of transactions sent per client has limited effect on
the overall performance in terms of TPS. Though further
studies can be done on the transactions success rate as it
pertains to the number of transactions sent per client.

3) Series C: Series C indicates that transaction size has
an apparent effect on overall throughput. Empty transactions
are around 137 btyes, and throughput is showcased in Series
A test trial 1. As transaction size increases, the performance
drops.

4) Series D: The data indicates that packet loss has a
direct effect on performance. Under real world packet loss
conditions such as 0.001% packet loss or 0.01% packet loss,
TPS suffers tremendously to the point where performance is
close to on par with Ethereum levels of TPS.

5) Series E: Series E varies the number of block produc-
ers in the network. The results show that here is a positive
correlation between the number of producers and throughput.
However, further studies are necessary to gain a better insight
into this trend.

6) Series F: The number of clients in the system was
varied from 100, 200, to 300 clients. As can be discerned
from the data, the effect of increasing the number of clients
in the network did not have significantly pronounced effects.
This test can be further extrapolated to larger amounts of
clients to test the overall resilience of the network to real
world conditions.

THROUGHPUT BY TEST SERIES

100 Clients
200 Clients

(F) Higher Number of Clients
300 Clients

3BPs
118Ps
158Ps.

(E) Number of Block Producers

0.01%
(D) Packet Loss 0.001%
1%

2598 (+50%)
344B (+100%)
429B (+150%)

TEST SERIES

(©) Transaction Size

400TPS
600TPS
1000TPS

(B) Transactions Sent Per Client

[CASE 1 oms
N CASE 2 (A) Network Latency ?gomr:\s
I CASE 3
o 50 100 150 200 250
THROUGHPUT (TPS)
Fig. 12. Throughput By Test Case

Series Ratio Percentage

Al 0.95972 95.97

A2 0.60435 60.44

A3 0.16778 16.78

Bl 0.95972 95.97

B2 0.60435 60.44

B3 0.47781 47.78

Cl 0.96396 96.40

C2 0.95985 95.99

C3 0.96023 96.02

D1 0.16778125 16.78

D2 0.16778125 16.78

D3 0.0 0.0

El 0.001645 0.16

E2 0.458333 45.83

E3 0.458333 45.83

F1 0.29111 29.11

F2 0.14535 14.53

F3 0.09688 9.69

TABLE VIII
SUCCESSFULLY PROCESSED TRANSACTIONS
J. Analysis

The performance metrics observed when factors such as
real world network latency and packet loss are implemented
indicate that TPS in EOS approaches levels comparable to
Ethereum. Concurrently, increases in transaction size also
result in lower transaction throughput. This leads to the
prediction that the high levels of transaction throughput
that are showcased in marketing documents were achieved
under ideal network conditions, and not real world network
conditions. Additionally it should be noted that EOS is
capable of selectively choosing transactions to be processed
in the system as opposed to using predetermined algorithms.
This can lead to the network picking out smaller/easier
transactions to process in order to maximize transaction
throughput.

When assessing the success rate of processed transactions,
it is apparent that the network does not alleviate congestion,
though rather circumvents it. As transaction success rate
can drop below 1% in certain trials, it can be assumed
that the unprocessed transactions are kept in the heap. The
fate of these transactions are currently unknown, as ignoring
transactions in the heap may be another mechanism used to

S3NQVIYVA

Transaction Sent from blacc2 to blacc3

Fig. 13.

increase perceived transaction throughput

K. Manual Test

1) Sybil Attack Test:
a) Overview:

« Blacklist an account by majority of the block
producers

« Send multiple transactions from the blacklisted
account

o Check if these transactions will be successfully
processed or rejected

e Observe which block producer has included
blacklisted account transactions into a block

b) Steps:
e Create 3 BPs nodes

o Create 3 client nodes
o 2 block producers blacklist all clients

— Add blacklist to config.ini

* “actor-blacklist = blaccl”,
* “actor-blacklist = blacc2”,
* “actor-blacklist = blacc3”,

— Repeat for BP nodes 1 & 2

« Kill nodeos

« Reinitiate nodeos using updated config.ini file

« Have blacklisted account send transactions

« check block logs to see if any of the transac-
tions have been included in the blocks

c) Results:

In this system, three block producers were created in rep-
resentation of the network. The set up consisted of a gen-
esis block producer for setting up the network along with
three block producers; EOSIO, producer 2, producer 3, and
producer 4. Each account in the network; blaccl, blacc2,
and blacc3 were allocated 10 SYS each. In this network,
block producer 1 and producer 2 have blacklisted accounts,
blaccl, blacc2, and blacc3, while the producer 3 did not
update their blacklist. When continual transactions are sent
into the system, block producers 1 & 2 stop the transactions
from occurring because of their updated blacklist though a
transaction successfully gets executed when processed by the
third block producer as described in Fig. 13.

As indicated in Fig. 14 and Fig. 15, account blaccl has 9
SYS while blacc2 has 11 SYS, indicating that a transaction
was successfully processed as each account originally started
with 10 SYS.

d) Analysis:
The implications of this successful transaction are that the
blacklist does not have a coordinated consensus mechanism
to algorithmically enforce its rules. The black list is merely a
registry that requires trusted block producers to manage and

memory:
quota:

(total stake delegated from account to self)
(total staked delegated to unt from others)

;Jelegated:
us

available:
Limit:

ount to self)
unt from others)

(total stake delegated from a
(total staked delegated to

9.0000 SYS
20000. 0000 5YS
0.0000 SYS
20009.0000 SYS

producers: <not voted>

Fig. 14. Balance of Account blaccl

root@whiteblo leos -u http: 1.0.14:8889 get account blacc2

created: 2 6T 56.000

)57Rc
NSt
16.2 KiB used:

10000.0000 SYS (total stake delegated from
0.0000 SYS (total staked delegated to
used: @ by
EVELELIEH
limit:

unt to self)
nt from others)

unt to self)

10000.0000 SYS
5 nt from others)

(total stake delegated from
(total staked delegated to

delegated: 0.0000 SYS
used:

available: 14.19 min
limit: 14. min

11.0008 SYS
20000.0000 SYS
0.0000 SYS
20011.0008 SYS

<not voted>

Fig. 15. Balance of Account blacc2

implement. This further implies that there is not a true con-
sensus algorithm in a BFT context as the system is constantly
susceptible to spam and DDoS attacks. This is in fact a large
vulnerability in the system as fraudulent users are essentially
able to create malicious accounts much faster than the block
producers are able to come to consensus on the content
of their blacklist. Block producers do not actually process
transactions based on any consensus algorithm, though rather
process transactions in a mechanical fashion as there is no
formal verification of the validity of transactions.

Malicious actors are able to send transactions that are
fraudulent as long as they act before block producers can
come to a social agreement to blacklist their account and
unanimously update their blacklist. It is important to note that
in order to update the blacklist, it is necessary to shut down
<nodeos> and then restart the system while re-entering
the network with the updated <config.ini> file. A skilled
adversary is able to create multiple accounts at minimal
costs, much faster than all the block producers coming to
social agreement on a blacklist, update their config.ini file,
and reinitiating their nodeos instance. Within the timeframe
necessary to conduct that process, malicious actors can
already execute multiple subsequent spam attacks, bypassing
any blacklist.

2) Voting:

Fig. 16. Full List of Block Producers

'100000000 100000000

'100000000

em delegatebw blaccl b
em delegatebw blaccl b

"'180000000

Fig. 17. Failed Transaction from Client Due to Blacklisting

a) Overview:

« Every block producer will blacklist all voters
« Client nodes vote for different BPs
« Investigate if BP will keep their positions

b) Steps:

e Create 22 BP nodes

e Create 1 client node

« Give client node majority of the networks SYS
o BP1-21 will blacklist the client node

— Add blacklist to config.ini
* “actor-blacklist = blaccl1”,

« Kill nodeos

« Reinitiate nodeos using updated config.ini file
o Client node will attempt to vote for BP22

o Check if BP22 has become one of the 21 BPs

c) Results:
Fig. 16 represents votes that all of the block producers have.
In this test, one account was manually given the majority
of the SYS in the network. SYS was pulled directly from
EOSIO and sent directly to account blaccl. A coordinated
effort was executed where block producers would blacklist
this account.

As Fig. 17 shows, the account and resulting transactions
are now on the coordinated black list. shown in the same
figure, the account blaccl is attempting to delegate band-
width to their account but they are not allowed to. This
implies that the blacklisted account: blaccl is not able to
delegate anymore bandwidth, vote for block producers, or
send transactions. The account is now completely frozen.

d) Analysis:
This type of attack can be executed by block producers
simply accessing the explorer to discern the EOS holders
with the largest voting powers and colluding to blacklist
the accounts that threaten the authority of their existence
as block producers. This type of vulnerability in the system
is important to distinguish as there is no algorithmic rule
preventing block producers from behaving in this manner.
There is no proper protocol that is setup to prevent block
producers from colluding to maintain their role as block
producers. This further proves the high level of centralization

that exists in the EOS network and the tremendous power
these block producers possess.

3) Source Code & Client Software:
a) Overview:
« Make changes to the source code for one of
the BPs
« Rebuild the network
« See if the BP and clients can communicate and
participate in the network
b) Steps:
« make 21 BPs
o Create 5 client nodes
e Corrupt the source
’chain_plugin.go’
— Line 360-363
* if(!chain.is_known _unexpired_transaction

(id){..}
— Line 354-358
* auto id = trx->id();
x if(fc::time_point(trx->expiration())
>=block_time){...}
« Kill nodeos
« Reinitiate nodeos using corrupted source code
e Check to see if the block producer with the
corrupted source code can participate in the network

code located in

c) Results:

In this network, one of the block producers was configured
with client software that blocks all of the transactions that are
processed. Block producers process transactions following
a preset schedule in a round robin fashion. Transactions
were constantly sent in this network and whenever the block
producer with corrupted software is activated to process
transactions, errors were noted in this system.

Fig. 18 indicates that transactions are constantly being pro-
cessed in this network as indicated by the node: <warning:
transaction executed locally, but may not be confirmed by
the network yet]>. Though it is important to note the
error pertaining to duplicate transactions that emerge in the
network. The duplicate transaction errors execute every time
the block producer with faulty code processes transactions.
After the duplicate transaction errors, the non faulty block
producers continue to successfully process transactions. One
important point to make here is that only the block producer
that is running the modified source code is able to notice the
duplicate transaction errors. Nothing in the system allows
other block producers to audit the logs of the faulty block
producer because the system relies on social trust that each
block producer is correctly running the right software and
there is no formal verification of that software.

d) Analysis:
This is a severe vulnerability in the system. If block produc-
ers do not need to reveal the code that they are running, the
block producers can alter their systems to act in a nefarious
manner. Block producers have the ability to maliciously

o
but
1

-u http://10.6.0.6:

by the network yet
USe o012 Usencoood:

ocally, but may ne
—u http://10.6.0.6:

Fig. 18. Stream of Constant Transactions to Block Producers

alter block transactions without the consent from the rest
of the network, due to the black box nature of this system.
This particular vulnerability further indicates how the overall
network does not have a viable consensus algorithm as the
underlying infrastructure of the network is not configured
as a blockchain, rather a network of non transparent data
centers.
4) Transactions as Proof of Stake Vulnerability:
a) Overview:

o partition the network

o send different transactions to build different
multi-index tables

« reintroduce the nodes

« send transactions from client nodes

o check if transactions have been included in the
block

b) Results:
Limitations were discovered regarding this test. As discussed
previously, the multi-index table acts as a mempool designed
to contain unprocessed transactios. However, there exists no
means of viewing the current state of the mempool, short
of having the process running as a slave to a debugger
with heap inspection. Counter intuitively, within this software
architecture, only the software itself is able to access the
multi-index of the network, leaving open source developers
oblivious to the information on unprocessed transactions.

c) Analysis:
This lack of accessibility is uncharacteristic of open source
software. Normally in an open source ecosystem, it would be
expected that developers would have access to these types of
databases. The expectation would be that developers should
be able to access the mutli-index table in order to verify
that transactions are legitimate. Unfortunately, as can be seen
from the source code, there is no formal verification protocol

that occurs to validate transactions beyond the fact that
that block producers are including them within transactions.
The configuration of this system introduces further suspicion
as mentioned in our performance testing on the fate of
orphaned transactions that are not successfully processed by
the network. In Ethereum, orphaned and stale transactions are
apparent for the network to see in the available mempool,
while economics are used to determine whether miners or
validators choose to process those transactions.

In EOS, there is no true mechanism to determine the fate
of unprocessed transactions. One theory as mentioned in
our performance section is that transactions are selectively
chosen for the purpose of maximizing transaction throughput
in the system while bypassing difficult transactions that
would cause network congestion. Picking transactions in
this manner does not alleviate network congestion but rather
ignores it. What this means is that unprocessed transactions
are kept in the computer heap while only easy transactions
are successfully processed. Unprocessed transactions are
essentially left behind as there is no access to the multi-
index table that houses these transactions. This evidence
further calls into question, the design of EOS and how it
functions as a software that does not successfully optimize
the consensus around processing the transactions that are sent
to the network.

IV. ECONOMIC SYSTEMS ANALYSIS

Within blockchain-based networks, the implementation of
effective game theory design is paramount to the success of
the system. The method in which these systems go about
doing so is generally reliant on suitable token economics,
which attempt to incentivize human behavior using some
degree of economic reward. The EOS system attempts to
provide such a model of its own and the following section
illustrates the economics of the EOS token.

A. Context of the EOS Token

Prior to discussing the details of the EOS token economics,
it is important to provide some context concerning the history
of the EOS token, including the technologies involved in the
system, the process of the token sale and its distribution, and
the context of various stakeholders in the ecosystem. EOS
emerged as a potential decentralized application platform
in 2017, when the market leading decentralized application
platform, Ethereum, was encountering significant perfor-
mance and scaling challenges, including high fees, increased
blockchain bloat, and sub-optimal transactions times which
had a drastic effect on user experience.

The EOS platform was proposed by Dan Larimer, who
has a history of developing different blockchain projects,
most notably Bitshares and Steem.it. Much of the technical
architecture of the EOS platform was first used in these
platforms and systems, so we can make comparisons when
appropriate. The primary carry over from Bitshares and
Steem.it is Larimers commitment to the delegated proof-
of-stake byzantine fault tolerance (DPoS-BFT) consensus

mechanism for driving agreement between nodes. While the
performance and fault tolerance of this system is discussed in
other sections, we discuss how the DPoS-BFT system affects
the EOS network.

1) Initial Token Sale: EOS emerged in the media as a
force through the scale of its token sale. During its token
sale, EOS raised $4 billion over the course of one year-
the largest token sale to date. The tokens were initially sold
as ERC-20 tokens on the Ethereum network. As the EOS
network approached launch, Block.one, the group in charge
of writing and building the EOS software executed a token
swap for ERC-20 tokens for native EOS tokens [35]. The
token swap was a critical component of the EOS main-net
launch, as token holders who did not swap their tokens by
June 2, 2018 lost the opportunity to redeem their tokens.
Many exchanges agreed to automatically swap tokens for
holders, which helped the token swap process; ultimately,
only 0.3% of the tokens were left unaccounted for [36].

2) Distribution of Tokens Across Accounts: Within the
context of the token sale, it is important to understand
who owns the EOS tokens. The distribution of EOS token
holders gives insight into the level of economic centralization
of the system. As will be discussed later, this economic
centralization deeply impacts the behavior of the system
because EOS use of DPoS. It is against the EOS constitution
for a member to hold more than 10% of the token supply
[37]. However, this rule is difficult to enforce as one member
could control multiple accounts. As of June 3, 2018 (at the
time of the EOS main-net launch), the top ten addresses
in the EOS network controlled 496 735 539 out of the 1
billion tokens (i.e. 49.67%), while the top 100 addresses
held 74.82% of all tokens [38], [39]. From these numbers,
it appears that EOS tokens are concentrated among a small
number of addresses. Even after accepting that some of these
addresses represent exchange wallets, this has consequences
for the governance of EOS block producers, as discussed in
Section IV.E.

3) Token Inflation: While 1 billion tokens were initially
sold during EOS initial coin offering, the token also has a 5%
annual inflation rate. The reason that EOS has such inflation
is because the inflation is meant to replace transaction fees
for users on the network. 1% of the inflation is given to
block producers as payment for securing the network. Out
of this one percent, 0.25% of the reward is given to the
block producers, while the other 0.75% is awarded to the
standby block producers who received more than 100 EOS
token votes. The other four percent is deposited into a smart
contract called the Worker Proposal Fund [40]. Supposedly,
the Worker Proposal Fund is governed by EOS token holders
to further develop the EOS ecosystem, though there is cur-
rently no process to do so. There has been some discussion in
the EOS community about eliminating the Worker Proposal
Fund and instead burning these tokens (which would keep
the EOS token inflation to 1% annually). These discussions
have been in the larger context of increasing deflationary

forces in the EOS network: namely, now including a one
percent fee on RAM market transactions [41].

B. EOS Token Utility

In this section, we will try to highlight the various utilities
of the EOS token. While the cryptocurrency market is
currently inflated with a lot of overvalued projects, in an
efficient market, the value of various tokens would be tied
to the fundamental utility of the respective tokens in their
systems. Thus, understanding the fundamental utility of the
token in the EOS network is important to understanding the
value of the token.

Beyond understanding the economic value of a token,
understanding the EOS tokens utility is important in an-
alyzing the cryptoeconomic system surrounding the token,
including the interaction and relationships between different
stakeholders. In most cryptocurrrency systems, the incentives
surrounding the systems native asset need to be designed to
encourage various properties: security, censorship resistance,
and decentralization. These three properties are deeply tied
to each other. By understanding the EOS tokens utility, we
can better understand its incentive structure to better evaluate
how the system will evolve with respect to these properties.

1) Voting For Block Producers: One of the primary pur-
poses of the EOS token is voting for block producers in
the DPoS consensus system. In the Delegated Proof-of-Stake
consensus mechanism, participants in the voting process use
their tokens to signal which block producers they want to
construct blocks in the next epoch. In every voting round,
the 21 block producers with the highest number of tokens
backing them. There is then a round robin between block
producers. Each block producer constructs 6 blocks with a
block time of 0.5 seconds. If a block producer misses a
block, then an empty block is simply committed to the chain
[2]. Voters are continuously staking tokens for the block
producers, changing their votes if they do not like the block
producer’s behavior. After every block producer constructs
their set of blocks, the votes are reevaluated to generate the
net set of block producers. In this scheme, block producers
solicit votes from token holders in order to be elected.

There are a number of key nuances with the voting system
in EOS [42]. First, accounts can vote for at most 30 block
producers. Second, the amount of votes an account gets is
the number of staked tokens the account has, so unstaked
tokens cannot be used to vote. Third, when an account votes
for multiple block producers, the block producers receive
votes for the entirety of the accounts balance, i.e the votes
are not split up among the block producers. For example, if
an account has 10 EOS token and votes for 3 different block
producers, then each of those three block producers receives
10 votes.

2) Delegation of Resources: The second critical utility
that the EOS token provides is to delegate resources of
the network. The EOS whitepaper identifies three distinct
categories of resources in blockchain systems: bandwidth

and log storage, computation and computational backlog,
and state storage [2]. Bandwidth is a log of all the different
Actions that have occurred and is measured by the rate of
bytes being added to the ledger; from this log, the present
state of the system can be reconstructed. The computational
metric is measured as the amount of CPU time that can be
billed (a maximum of 400 ms per second, with an average
of 40 ms per second on the EOS network [43]. The CPU
time is delegated to accounts proportional to the amount
of tokens the accounts have staked. The final resource is
state storage, referred to as RAM in the EOS whitepaper,
which represents the information that is required for various
application logic [2]. To distribute these resources, the EOS
protocol utilizes the EOS token. According to the whitepaper,
if an account holds 1% of the total EOS tokens in circulation,
then the account is entitled to 1% of the networks bandwidth,
computation, and state storage (RAM).

One important characteristic of resources in the EOS net-
work is how bandwidth and computation can be rented out by
token holders. This means if a token holder is not using the
entirety of their allocated bandwidth and computation, then
they can delegate or rent the extra resources to other users
on the network. However, unlike bandwidth and computation,
RAM cannot be delegated. Instead, RAM can be purchased
from an EOS system contract according to previously defined
market rates [44]. The effects of these dynamics on the
economics of EOS will be discussed further in Section IV.E.

3) Fees in the RAM Market: The final key use of the
EOS token is that the EOS token is used to pay the 1% fee
in the RAM market [41]. The fee is burned in the RAM
market system contract. The intent of the fee is to offset the
inflation in the system and disincentivize speculators in the
RAM market.

C. Understanding EOS Supply And Demand

As with any economic system, it is important to under-
stand the two most fundamental price drivers: supply and
demand.

1) EOS Supply: A total of 1 billion tokens were released
during the token sale. Most of this total was redeemed on
the main-net, not all of the were, which slightly decreased
the supply [36]. Second, there is the 5% inflation rate of the
EOS token. One percent of this inflation is given to block
producers (with .25% going to the elected block producers
and .75% being divided by standby block producers who
received votes) [40]. Third, the liquid supply of the EOS
token depends on how many of the tokens are currently
being staked for resources on the network. If an application
developer is using these tokens to reserve resources, these
tokens are essentially removed from the supply since the
application developer is not going to sell these tokens.
Fourth, EOS tokens are burned as a fee when RAM is bought
from the EOS system contract that controls the RAM market
[41]. Lastly, a fifth deflationary force on the EOS network is
for the namespace auctions, in which holders of their tokens

can purchase various domain names in the EOS network [40].
These tokens are burned and removed from supply.

The supply of the EOS token could also change should the
change be approved through the EOS governance process.
For this to occur 15/21 block producers would have to vote
in favor of the change for 30 days before the change would
be implemented [2].

2) EOS Demand: The demand for the EOS token is
essentially driven by the various utilities discussed in Section
IV.B and the incentives discussed later in Section IV.D. Thus,
demand should be based off 1) who wants to vote for block
producers (and how much are they willing to pay this right)
and 2) who wants to access resources on the network (and
how much of the resources they want). Beyond these two
factors, the demand for the EOS token is also impacted by
the overarching dynamics of the cryptocurrency market, in
which speculators often rely on volatile boom-bust cycles for
returns.

D. Incentive Structure of the EOS Token

This section will attempt to illustrate the different incentive
structures of different stakeholders in the EOS network,
specifically with respect to the EOS token. We identify 4
distinct stakeholders in the EOS system: users, application
developers, block producers, and standby block producers.
Each of these different stakeholders interacts with the EOS
token in a different way.

1) Users: One of the primary goals of the EOS protocol
is to eliminate the need for users to pay fees in order to
use decentralized applications. This has been one of the
larger points of friction involved in the user experience of
Ethereum-based decentralized applications, which implement
a gas model that holds users responsible for paying for the
computational overhead required to execute transactions and
other actions on the Ethereum blockchain . This gas fee also
helps prevent spam attacks on the network and creates a hard
limit on the complexity of smart contracts which prevents
malicious code from stalling the network (infinite loops,
brute force attacks, etc). EOS attempts to address this pain
point by eliminating the need for transaction fees on behalf
of the user. To some extent, however, this further reduces the
incentive for users to hold tokens.

The primary incentive for users to hold EOS tokens is
the ability to delegate authority to the block producers they
choose to act on their behalf in the process of validating
transactions and blocks, however, this can be undermined by
the block producers themselves since there is no determin-
istic mechanism to prevent their collusion or ability to vote
for themselves.

2) Application Developers: In the EOS network, the
developers are responsible for maintaining the costs asso-
ciated with running their applications and in doing so, the
EOS system is able to provide a user experience free of
service-related fees [2]. This mechanism implies a strong

incentive for application developers to hold and stake EOS
tokens in exchange for access to necessary resources which
ensure low-friction interactions with their applications. Al-
ternatively, application developers can require users to stake
their own tokens in order to interact with their applications.
This is similar to Ethereum’s gas model which places the
responsibility of compensating for the cost of interacting with
the application on the users.

This paradigm, however, can imply a dangerous Web 2.0
model: users are therefore beholden to application developers
in order access their data or state associated with the appli-
cation, as it is under the control of the application developer
who can choose which model to implement, which also
becomes a form of application level censorship that the EOS
economic model permits and even encourages.

3) Block Producers: Because block producers are voted
into position using EOS tokens, there is a strong incentive for
block producers to hold EOS tokens so that they can vote
for themselves. There is also a strong incentive for block
producers to solicit the votes of EOS token holders to further
ensure their position as a block producer. This voting process
introduces a political dynamic that is discussed further in
Section IV.E.

4) Standby Block Producers: Because only 21 block
producers are selected, there remains a large set of people
who want to be block producers but are stuck on the outside
looking in. These are groups who either dont hold enough
EOS tokens to vote themselves into being block producers
or have failed to solicit enough votes. These standby block
producers are critical to the EOS DPoS model for a number
of reasons.

Standby block producers create competition for existing
block producers. If a block producer behaves badly or does
not perform their duties, standby block producers are there
to take their place. Second, standby block producers act
as a fault tolerance mechanism; if a block producer does
not produce blocks for a 24-hour period, a standby block
producer should replace them. Standby block producers are
incentivized to continue lobbying votes because a portion of
the inflation reward generated every block is divided between
them.

E. Voting and Governance of the EOS Block Producers

As explained in Section IV.B.1, one of the fundamental
utilities of the EOS token is voting for block producers.
This functionality emerges because of EOS use of Delegated
Proof-of-Stake, in which token holders vote for who they
want to create blocks. However, higher levels of governance,
including changes to the protocol, are mediated through
block producers [2]. Thus, the voting process for block
producers is also the mechanism through which the EOS
network is governed with respect to censorship and upgrades.

Token holders continuously vote for block producers.
Every epoch (126 blocks), the top 21 block producers are

selected for the next epoch. By winning the election, block
producers are gifted immense power in the system: 1) they
can vote to freeze accounts, 2) they can change malicious
account code, and 3) they vote to make changes and upgrades
to the protocol [2]. Because the voting process is directly tied
to the economics of the system, understanding the dynamics
of the EOS token value, supply, and incentives gives insight
into how the network is governed.

It is clear that the EOS network is censorable, as the
whitepaper explicitly states that block producers can agree to
freeze accounts change malicious code [2]. We have already
seen accounts be frozen, showcasing how the network has
a governance structure that enables censorship [45] This is
because the EOS protocol does not have algorithmic, codified
defenses to malicious actors. Instead, the EOS protocol
relies on the social and benevolent governance of selected
block producers for security. By extension, the security of
the protocol is based on the robustness of the EOS voting
process.

Understanding EOS governance is closely connected to
token distribution. In the EOS network, consensus is reached
(on blocks, actions, and upgrades), when 15 out of the 21
block producers agree [2]. This provides the foundation for
any analysis of EOS governance. Because EOS tokens are
highly concentrated amounts in few accounts, a small number
of accounts control the voting process for block producers.
In fact, there are certain accounts that can guarantee their
position as a block producer based off their EOS token
holdings.

An even greater concern is large token holders work-
ing together solidify their positions, making it even more
difficult for malicious block producers to be voted out. If
various token holders communicate with each other, then
they coordinate various actions on the network, including
the censorship of accounts and upgrades to the protocol
that reinforce their own authority. However, beyond just the
theoretical collusion of block producers, there is evidence
that block producers have been trading votes with each other
to do just this: maintain their role as block producers. In the
alleged reports, a major block producer and token holder,
Huobi, has offered to vote for other block producers in return
for some share of the block producers profits [46]. Notably,
such behavior is against the EOS constitution [37]. However,
we have not seen the accounts involved in such cartelization
be frozen, bringing up questions about the fairness of the
EOS governance process.

The governance system of EOS is fundamentally depen-
dent on block producers being held accountable. If a block
producer is not providing adequate resources or honoring
the protocol, then token holders must be able to vote them
out. If a block producer is unfairly censoring transactions
or smart contracts, then the token holders must be able to
vote them out. If block producer is supporting an upgrade
or change to the network that token holders do not support,
then token holders must be able to vote them out. The core

assumption in the EOS security model is that token holders
have the ability to vote bad actors out of their position of
power. Block producers can work together to ensure their
authority in the network, which fundamentally contradicts
the requirements for a secure, decentralized, and censorship
resistant smart contract platform.

FE. The Resource Market on the EOS Network

1) Overview of the Resource Market: One of the impor-
tant economic features of the EOS system is the market
for resources. The EOS uses a different model for resource
allocation than Ethereum. In the EOS model, the three
resources (bandwidth, computation, and RAM) are allocated
based on how much EOS token a particular account has.
The block producers are in charge of allocating resources
proportional to the amount of token claiming a particular
resource. As discussed earlier, token holders can delegate or
rent out the extra bandwidth or computation they are entitled
to; however, this is not the case for RAM [2].

In the EOS resource markets, resources are rented. The
goal is that longer term renting contracts reduce volatility
in prices, decrease short term denial of service attacks due
to high fees, and are easier for economic accounting [43].
However, this model creates its own challenges. First, the
liquidity of the EOS token decreases when tokens are locked
up in rent contracts. With lower liquidity, price discovery
for the EOS token (and ultimately the underlying assets of
bandwidth and computation) becomes more difficult. Second,
the rent model opens up the resource markets to rent seeking
by large token holders. Given the concentration of EOS
tokens among a small number of accounts, rent seeking is
an even larger concern: because a small number of accounts
control so many EOS tokens, market prices of the resources
can be controlled by a small number of actors in the system.

The problem of speculation and market manipulation has
been especially pronounced in the RAM market. We have
already seen block producers drive the price of RAM up
through hoarding for their own profit [47]. By hoarding
RAM, token holders can essentially drive the price up to
extract money from those trying to access this resource.
This speculation around the RAM market has made the price
of RAM unaffordable, making it difficult for decentralized
applications to operate [48]. To solve this problem, the EOS
team implemented a Bancor style pricing algorithm. The
Bancor Relay Tokens is a type of smart contract that ensures
that the exchange rate of two assets never reaches zero; when
the supply of one asset is decreased, the exchange rate with
respect to that asset increases [49].

Block.one and the EOS development team have imple-
mented this algorithm for the RAM market. The system
contract acts as a manager of the RAM resource to theoret-
ically aid in price discovery. This system contract enables
token holders to buy and sell RAM back at previously
specified market rates [44]. In order to limit speculation,
every transaction with the system contract burns a 1% EOS

token fee [41]. However, it is unclear if this new algorithmic
pricing system effectively curbs speculation as the dynamics
around speculation still exist. If the exchange rate of the
Bancor Relay is low, then token holders will hold on to the
RAM they have already purchased until the price of RAM
goes up. This behavior is again more pronounced when a
few token holders can buy up a lot of RAM when the price
is low. While the 1% fee theoretically limits speculation, this
actually shifts the balance of power in the market even more
towards block producers, as they are the ones who can afford
to pay the 1% fee because they are earning EOS tokens as
a reward.

2) Understanding the Effect of the RAM Bancor Algo-
rithm: Inspection of the EOS RAM generation contract
yielded insight into how RAM is created. From looking at
the source code, the supply of RAM is adjusted in terms
of availability based on the the price of where RAM is
traded according to the Bancor relay connector algorithm
[50]. However, the actual supply of RAM is more based on
the computational resources of the hardware used to run the
network, rather than what the algorithm says. There is an
attempt to algorithmically set the price of RAM based on
a predefined formula, but there are situations in which the
speculation on the price of computation in the network can
cause the promised supply of the computational resources to
exceed the actual limits of the hardware because the eco-
nomics of algorithm are decoupled from the computational
capabilities of the hardware.

The capacity of the EOS network is defined by the
computational capacity of the EOS block producer hardware.
According to the protocol, block producers publish their total
computational capacity to the network so that token holders
can use this information to vote and to buy and stake tokens
appropriately. However, this introduces two main challenges:
1) it is difficult to verify that a block producer actually has
the computational resources they claim to have (especially
when the network is not under stress) and 2) it is difficult to
verify that a block producer is allocating the computational
resources fairly and according to the protocol. All of this
asymmetry means that price discovery for these resources is
difficult, if not impossible. Considering the blackbox nature
of how the EOS block producer hardware is managed and
implemented, it is nearly impossible to determine a fair
market value for the RAM produced, which similarly affects
the price discovery of EOS tokens.

According to the protocol, block producers should divide
computational resources based on staked tokens. However,
it is difficult to confirm that they are doing this because
there is no way to know if what code the block producers
are running. This contrasts starkly with Ethereum. The
Ethereum protocol defines a strong set of rules that nodes
must adhere to; because these rules are so strong, if a
node does not adhere to the rules, they cannot participate
in the network. This is what enables different nodes to run
different code. However, the EOS whitepaper does not have

the same detailed specifications. Similarly, the strict rules
of the Ethereum protocol are cryptographically verifiable
through Merkle proofs. The problem with the EOS protocol
is that much of the behavior of block producers cannot be
verified computationally or algorithmically. This highlights
two major concerns with the EOS protocol. One, as discussed
earlier, the EOS protocol relies on social governance to
deal with bad actors. Second, this adds another layer of
inefficiency (particularly with respect to information access)
on top of the various market inefficiencies the cryptocurrency
market already deals with.

3) Game Theory and Cryptoeconomic Mechanism De-
sign: As described in the Incentive Structure of the EOS
Token section, the primary incentive for owning EOS tokens
revolves around the accumulation of value from token price
appreciation as well as speculation of the value of com-
putational resources that are generated from staking EOS
tokens. Additionally there is an incentive for block producers
to accumulate tokens for the purposes of maintaining their
position as block producers through the voting process.
These mechanisms are designed to encourage token holders
to purchase tokens, though there are no internal feedback
mechanisms designed for speculators of the RAM market to
act fairly and ensure the health of the network itself.

Conversely in Ethereum, transaction fees are designed to
incentivize miners to prioritize certain transactions over oth-
ers. Higher gas prices result in miners making more money,
though at the same time, the fees prevent spam transactions
as attackers cannot spam the network without expending
large monetary resources [51]. The system was designed
to incentivize miners to both accumulate fees while also
coordinating that same action toward securing the network
for validation of transactions. In this ecosystem, there exists a
positive feedback loop in which there is a coupling between a
validators desire to secure the network as well as to generate
fees [52]. As EOS lacks a mechanism designed to couple the
desire to help the network while concurrently accumulating
value toward self interest, it can be concluded that EOS
does not secure the network using game theory incentive
structures.

V. CONCLUSIONS
A. Architecture

Based on a thorough assessment of the entire system, EOS
was originally architected as a blockchain, though the re-
sulting platform failed to achieve the necessary composition
of a blockchain system. The platform was instead, built as,
a distributed database system. This becomes apparent from
the substantial reliance on architecture where cryptographic
validation is not necessarily instantiated, though rather im-
plemented in proximity.

B. Performance

As observed in the section on performance, the transaction
throughput in the system does not exceed 250 TPS even in

optimal settings with 0 ms of latency and 0% packet loss.
During tests with real world conditions of 50 ms of round
trip latency and 0.01% packet loss, performance dropped
below 50 TPS putting the system in close proximity to the
performance that exists in Ethereum. Consensus in EOS does

not exhibit Byzantine Fault Tolerance. The use of 21 block
producers in the system is arbitrary as the producers are
processing transactions in a round robin manner, with no
algorithmic logic when block producers behave nefariously.
Various forms of consensus failure were shown in the
network testing. Consensus is entirely dependent upon the
voting mechanism which is based on social consensus, not
algorithmic BFT consensus.

C. Economics

An analysis of the EOS token system reveals that the
network acts as a marketplace for available computation. The
network provides computational services that are essentially
credits for computation generated by the 21 block producers.
Because the configuration and processing capabilities of the
21 block producers are shielded from the public, there is no
way to discern the amount of computation available in the
network that is being promised by the tokens. This black
box nature of the block producers creates a system where
unverified computational value is being introduced into the
system, creating the potential for instability.

D. Summary

From this comprehensive analysis of the EOS system, it
has become apparent that in order for EOS to be able to
successfully act as a foundational base layer protocol, it
needs to re-architect a significant portion of its infrastructure.
EOS can potentially act as a side chain appended to other
more foundationally secure networks, though the system
would need to be rebuilt in order to address the problems
detailed in this report.

ACKNOWLEDGMENT

A number of different people from various organization
assisted in this research. We would like to thank Daniel
Choi and Trey Zhong from the Whiteblock team; Shahan
Khatchadourian, Ben Edgington, and Nicolos Lioshon from
the PegaSys team at Consensys; Wayne Chang, Grec Rocco,
and Steve Gattuso from the Alpine team at ConsenSys; and
Antione Toulme from the ConsenSys Core Engineering team.

We would also like to thank Andreas Freund, John
Wolpert, Ray Valdes, and Joe Lubin from ConsenSys for
additional contributions.

This research was also supported and reviewed by mem-
bers of the Duke Blockchain Lab at Duke University.

Lastly, we’d like to thank the following groups for their
committed support to this open ecosystem research effort:
Cosmos, the Ethereum Community Fund, IMToken, Amis,
Status, Maker Dao, Transference Fund, 1KX, CoinFund,

the Enterprise Ethereum Alliance, Loom, Grid+, PlaTON,
MixLabs, Web3 Foundation, Ledger Capital, Microsoft,
Google, ConsenSys, and Bo Shen (Founding partner of
Fenbushi Capital and Co-founder of Bitshares).

(1]

[2]
(3]
[4]
[3]
[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

REFERENCES
M. Bolton. “ICO New: Investments Soar Past the $12
Billion Mark as 2018 Becomes the Year of ICOs”. Internet:
https://theindependentrepublic.com/2018/08/10/ico-news-
investments-soar-past-the-12-billion-mark-as-2018-becomes-the-
year-of-icos/, Jul. 2018 [Oct. 26, 2018].
”"EOS.IO Technical Whitepaper v2”. Internet:
https://github.com/EOSIO/Documentation/blob/master/
Technical WhitePaper.md, Apr. 28, 2018 [Oct 27, 2018].
Whiteblock, Inc. Internet: https://www.whiteblock.io/
EOS Developer Documentation. “"Home”. Internet:
https://developers.eos.io/eosio-home/docs, [Oct. 30, 2018].
EOS Developer Documentation. ”Nodeos”. Internet:
https://developers.eos.io/eosio-nodeos/docs/, [Oct. 30, 2018].
EOS Developer Documentation. ”Cleos”. Internet:
https://developers.eos.io/eosio-nodeos/docs/cleos-overview, [Oct.
30, 2018].
EOS Developer Documentation. ”Keos”. Internet:
https://developers.eos.io/keosd/docs/, [Oct. 30, 2018].
EOS Developer Documentation. “Installing the Contract
Development Toolkit”. Internet: https://developers.eos.io/eosio-
home/docs/installing-the-contract-development-toolkit, [Oct. 30,
2018].
EOS Developer Documentation. ”Accounts”. Internet:
https://developers.eos.io/eosio-home/docs/accounts-1, [Oct. 30,

2018].

EOS Developer Documentation. “Learn About Wallets, Keys,
and Accounts With Cleos”. Internet: https://developers.eos.io/eosio-
nodeos/docs/learn-about-wallets-keys-and-accounts-with-cleos, [Oct.
30, 2018].

Genereos. "Name Bidding and Premium Names on EOS”. Inter-
net: https://steemit.com/eos/ @ genereos/name-bidding-and-premium-
names-on-eos, May, 2018 [Oct. 30, 2018].

EOS Developer Documentation. “Accounts and Permissions”.
Internet: https://developers.eos.io/eosio-nodeos/docs/accounts-and-
permissions, [Oct. 30, 2018].

B. Xu. "Blockchain vs. Distributed Ledger Technologies Part 2: Gov-
erning Dynamics”. Internet: https://media.consensys.net/blockchains-
vs-distributed-ledger-technologies-part-2-governing-dynamics-
a697848d5b82, May 23, 2018 [Oct. 30, 2018].

Bluabaleno. "EOS Whitepaper walk-through: Accounts and Action
and Handlers”. Internet: https:/steemit.com/eos/@bluabaleno/eos-

whitepaper-walk-through-accounts-and-action-and-handlers Apr.
2018 [Oct. 30, 2018].

Stack Overflow. “How Does WASM Get Inter-
preted by the EOS Virtual Machine”. Internet:

https://eosio.stackexchange.com/questions/167/how-does-wasm-
get-interpreted-by-the-eos-virtual-machine, May 10, 2018 [Oct. 30,
2018].

Web Assembly Github. Internet: https://github.com/WebAssembly/
design/blob/master/Modules.md, [Oct. 30, 2018].

EOS Developer Documentation. "Communication Model”. Internet:
https://developers.eos.io/eosio-cpp/docs/communication-model, [Oct.
30, 2018].

m-i-k-e. "The EOS ERC-20 Contract Explained”. Internet:
https://steemit.com/eos/ @ m-i-k-e/the-eos-erc-20-contract-explained,
2017 [Oct. 30, 2018].

EOS Developer Documentation. ”Action”. Internet:
https://developers.eos.io/eosio-cpp/reference#action-1, [Oct. 30,
2018].

EOS Developer Documentation. “Transaction”. Internet:
https://developers.eos.io/eosio-cpp/reference#transaction, [Oct.

30, 2018].
EOS Developer Documentation. ”Sending an Inline Transaction
to External Contract”. Internet: https://developers.eos.io/eosio-
home/docs/sending-an-inline-transaction-to-external-contract, [Oct.
30, 2018].

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]
[31]
[32]
[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Blockgeeks. "What is Ethereum Gas: Step-By-Step Guide”. Inter-
net: https://blockgeeks.com/guides/ethereum-gas-step-by-step-guide/,
[Oct. 30, 2018].

B. Xu. ”Blockchain vs. Distributed Ledger Technologies”. In-
ternet: https://media.consensys.net/blockchain-vs-distributed-ledger-
technologies-1€0289a87b16, Apr. 5, 2018 [Oct. 30, 2018].

Infinite X Labs. ”The Ultimate End to End EOS Dapp Development
Tutorial Part 17”. Internet: https://medium.com/infinitexlabs/the-
ultimate-end-to-end-eos-dapp-development-tutorial-part-1-
2f99¢512086¢, Apr. 30, 2018 [Oct. 30, 2018].

G. ‘Wood. ”Ethereum Yellow Paper”. Internet:
https://github.com/ethereum/yellowpaper, [Oct. 30, 2018].

EOS Developer Documentation. “Data Persistence”. Internet:
https://developers.eos.io/eosio-home/docs/data-persistence, [Oct. 30,
2018].

IBM Knowledge Center. “Exclusive
Locks and Shared Locks”. Internet:

https://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.5.0/
applications/designing/dfhp390.html, [Oct. 30, 2018].

Boost Multi Index Library. Internet:
https://www.boost.org/doc/libs/1_62_0/libs/multi_index/doc/index.html,
[Oct. 30, 2018].

EOS Developer Documentation. “DB API”. Internet:
https://developers.eos.io/eosio-cpp/docs/db-api, [Oct. 30, 2018].
EOS Developer Documentation. “Boot Sequence”. Internet:
https://developers.eos.io/eosio-nodeos/docs/boot-sequence, [Oct. 30,
2018].

EOS Github. Internet: https://github.com/EOSIO/eos, [Oct. 30, 2018].
EOS Developer Documentation. Internet: https://developers.eos.io/,
[Oct. 30, 2018].

EOS New York. Internet: https://www.eosnewyork.io/tech, [Oct. 30,
2018].

H. Finney. "RPOW- Reusable Proofs of Work”. Internet:
https://cryptome.org/rpow.htm, Aug. 16, 2004, [Oct. 30, 2018].

G. Jenkinson. “Moment of Truth for EOS: What’s Next
for $4 bln EOSIO Following Launch of v1.0”. Internet:
https://cointelegraph.com/news/moment-of-truth-for-eos-whats-
next-for-4-bln-eosio-following-launch-of-v10, Jun. 5, 2018 [Oct. 26,
2018].

B. Smith. "EOS token swap: What to do if you missed registration”.
Internet: https://www.coininsider.com/what-to-do-if-you-missed-eos-
token-registration/, Jun. 5, 2018 [Oct. 26, 2018].

“"EOS Constitution”. Internet: https://github.com/EOSIO/eos/blob/
5068823fbc8a8f7d29733309c0496438¢c339f7dc/constitution.md, Jun.
1, 2018 [Oct. 26, 2018].

“Just 10 Addresses Hold Nearly 50 EOS Tokens”. Inter-
net: https://www.trustnodes.com/2018/06/03/just-10-addresses-hold-
nearly-50-eos-tokens, Jun. 3, 2018 [Oct. 26, 2018].

D. Sui, J. Pfeffer, J. Gillis, E. Muzzy. ”A Retrospective of the EOS
Token Sale”. Internet: https://media.consensys.net/a-retrospective-of-
the-eos-token-sale-172d3437932b, Oct. 25, 2018 [Oct. 26, 2018].
EOS Canada. “Inflation on EOS: What do I need to know?”.
Internet: https://steemit.com/eos/ @eos-canada/inflation-on-eos-what-
do-i-need-to-know, May 2018 [Oct. 26, 2018].

D. Larimer. “Introducing EOSIO Dawn 4.0”. Internet:
https://medium.com/eosio/introducing-eosio-dawn-4-0-f738c552879,
May 4, 2018 [Oct. 26, 2018].

J. Kauffman. “Everything You Need To Know About Voting On
EOS”. Internet: https://www.eoscanada.com/en/voting-faqs, Jun. 12,
2018 [Oct. 26, 2018].

D. Larimer. "Proposal for EOS Resource Renting and Rent Distri-
bution”. Internet: https://medium.com/@bytemaster/proposal-for-eos-
resource-renting-rent-distribution-9afe8fb3883a, Aug. 2, 2018 [Oct.
26, 2018].

D. Larimer. "EOSIO RAM Market and Bancor Algorithm”.
Internet: https://medium.com/@bytemaster/eosio-ram-market-
bancor-algorithm-b8e8d4e20c73, Jul. 4, 2018 [Oct. 26, 2018].

D. Floyd. “EOS’ Blockchain Arbitrator Orders Freeze of
27 Accounts”. Internet: https://www.coindesk.com/eos-blockchain-
arbitrator-orders-freeze-of-27-accounts/, Jun. 22, 2018 [Oct. 26,
2018].

“"Rampant Collusion in EOS Exposed by Huobi Leak”. In-
ternet: https://www.trustnodes.com/2018/09/29/rampant-collusion-in-
eos-exposed-by-huobi-leak, Sept. 29, 2018 [Oct. 26, 2018].

[47]

[48]

[49]

[50]

[51]

[52]

A. Ancheta. "EOS Block Producer Traded RAM To $600k Profit -
And Did Nothing Wrong”. Internet: https://cryptobriefing.com/eos-
block-producer-ram-profit/, Jul. 9, 2018 [Oct. 26, 2018].

A. Vaskevicius. "EOS Stumbles Once More as Speculation
Causes RAM to Spike Beyond Affordability”. Internet:
https://toshitimes.com/eos-stumbles-once-more-as-speculation-
causes-ram-prices-to-spike-beyond-affordability/, Jun. 2018, [Oct.
26, 2018].

“"How do Relay Tokens work?”. Internet:
https://support.bancor.network/hc/en-us/articles/360000471472-
How-do-Relay-Tokens-work- [Oct. 26, 2018]

Internet: https://github.com/EOSIO/eos/tree/master/contracts/bancor,
May 22, 2018 [Oct. 26, 2018].

N. Tomaino. ”Cryptoeconomics 101”. Internet:
https://thecontrol.co/cryptoeconomics-101-e5c883e9a8tf, Jun. 4,
2018 [Oct. 26, 2018].

Walking Tree Technologies. ”Understanding Gas in Ethereum”. Inter-
net: https://medium.com/coinmonks/understanding-gas-in-ethereum-
53ad816f79ae, Jul. 16, 2018 [Oct. 26, 2018].

